Search Results

Now showing 1 - 3 of 3
  • Item
    Hollow square core fiber sensor for physical parameters measurement
    (Bristol : IOP Publ., 2022) Pereira, Diana; Bierlich, Jörg; Kobelke, Jens; Ferreira, Marta S.
    The measurement of physical parameters is important in many current applications, since they often rely on these measurands to operate with the due quality and the necessary safety. In this work, a simple and robust optical fiber sensor based on an antiresonant hollow square core fiber (HSCF) is proposed to measure simultaneously temperature, strain, and curvature. The proposed sensor was designed in a transmission configuration where a segment of HSCF, with a 10 mm length, was spliced between two single mode fibers. In this sensor, a cladding modal interference (CMI) and a Mach-Zehnder interference (MZI) are enhanced along with the antiresonance (AR) guidance. All the present mechanisms exhibit different responses towards the physical parameters. For the temperature, sensitivities of 32.8 pm/°C, 18.9 pm/°C, and 15.7 pm/°C were respectively attained for the MZI, AR, and CMI. As for the strain, sensitivities of 0.45 pm/μϵ, -0.93 pm/μϵ, and -2.72 pm/μϵ were acquired for the MZI, AR and CMI respectively. Meanwhile, for the curvature measurements, two regions of analysis were considered. In the first region (0 m-1 - 0.7 m-1) sensitivities of 0.033 nm/m-1, -0.27 nm/m-1, and -2.21 nm/m-1 were achieved, whilst for the second region (0.7 m-1 - 1.5 m-1) sensitivities of 0.067 nm/m-1, -0.63 nm/m-1, and -0.49 nm/m-1 were acquired for the MZI, AR and CMI, respectively.
  • Item
    Capillary based hybrid fiber sensor in a balloon-like shape for simultaneous measurement of displacement and temperature
    (Bristol : IOP Publ., 2022) Santos, João P.; Bierlich, Jörg; Kobelke, Jens; Ferreira, Marta S.
    In this work, a hybrid sensor based on a silica capillary in a balloon-like shape for simultaneous measurement of displacement and temperature is proposed for the first time, to the best of our knowledge. The sensor is fabricated by splicing a segment of a hollow core fiber between two single mode fibers (SMF) and by bending the fiber in a balloon shape with the capillary at the top-center position. In a transmission scheme, the SMF-capillary-SMF configuration excites an antiresonant (AR) guidance and the balloon shape enhances a Mach-Zehnder interferometer (MZI). The different responses of the interferometers to external displacement and temperature variations are conducive to a hybrid application of the sensor for simultaneous measurement of these parameters. Experimental results show that, for a capillary length of 1.2 cm and a balloon length of 4 cm, AR is insensitive to displacement and its sensitivity to temperature is 14.3 pm/°C, while the MZI has a sensitivity to displacement of 1.68 nm/mm and twice the sensitivity of AR to temperature, of 28.6 pm/°C. The proposed fiber sensor consists of only one sensing element in one configuration exciting two interferometers at the same time, which makes it of simple fabrication as well as low cost.
  • Item
    Near-field interference map due to a dipolar emission near the edge of a monocrystalline gold platelet
    (Bristol : IOP Publ., 2022) Abbasirad, N.; Barreda, A.; Arslan, D.; Steinert, M.; Chen, Y.-J.; Huang, J.-S.; Staude, I.; Setzpfandt, F.; Pertsch, T.
    Point source excitation and point detection in the near-field provides new perspective to study the near-field optical phenomena of plasmonic nanostructures. Using the automated dual-tip scanning near-field optical microscope (SNOM), we have measured the optical near-field response of a dipolar emission near the edge of a monocrystalline gold platelet. The image dipole method was used to analytically calculate the interference pattern due to surface plasmon polaritons excited at the position of aperture tip and those reflected from edges of the gold platelet. The near-field enhancement was observed on the edges of the gold platelet. Our results verify that automated dual-tip SNOM is an intriguing technique for quantum plasmonic studies where deterministic coupling of quantum emitters and the detection of the near-field enhancement are of great interest.