Search Results

Now showing 1 - 10 of 475
  • Item
    Agent-based modeling to integrate elements from different disciplines for ambitious climate policy
    (Malden, MA : Wiley-Blackwell, 2022) Savin, Ivan; Creutzig, Felix; Filatova, Tatiana; Foramitti, Joël; Konc, Théo; Niamir, Leila; Safarzynska, Karolina; van den Bergh, Jeroen
    Ambitious climate mitigation policies face social and political resistance. One reason is that existing policies insufficiently capture the diversity of relevant insights from the social sciences about potential policy outcomes. We argue that agent-based models can serve as a powerful tool for integration of elements from different disciplines. Having such a common platform will enable a more complete assessment of climate policies, in terms of criteria like effectiveness, equity and public support. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models The Carbon Economy and Climate Mitigation > Policies, Instruments, Lifestyles, Behavior Policy and Governance > Multilevel and Transnational Climate Change Governance.
  • Item
    Effects of climate change on combined labour productivity and supply: an empirical, multi-model study
    (Amsterdam : Elsevier, 2021) Dasgupta, Shouro; van Maanen, Nicole; Gosling, Simon N.; Piontek, Franziska; Otto, Christian; Schleussner, Carl-Friedrich
    Background: Although effects on labour is one of the most tangible and attributable climate impact, our quantification of these effects is insufficient and based on weak methodologies. Partly, this gap is due to the inability to resolve different impact channels, such as changes in time allocation (labour supply) and slowdown of work (labour productivity). Explicitly resolving those in a multi-model inter-comparison framework can help to improve estimates of the effects of climate change on labour effectiveness. Methods: In this empirical, multi-model study, we used a large collection of micro-survey data aggregated to subnational regions across the world to estimate new, robust global and regional temperature and wet-bulb globe temperature exposure-response functions (ERFs) for labour supply. We then assessed the uncertainty in existing labour productivity response functions and derived an augmented mean function. Finally, we combined these two dimensions of labour into a single compound metric (effective labour effects). This combined measure allowed us to estimate the effect of future climate change on both the number of hours worked and on the productivity of workers during their working hours under 1·5°C, 2·0°C, and 3·0°C of global warming. We separately analysed low-exposure (indoors or outdoors in the shade) and high-exposure (outdoor in the sun) sectors. Findings: We found differentiated empirical regional and sectoral ERF's for labour supply. Current climate conditions already negatively affect labour effectiveness, particularly in tropical countries. Future climate change will reduce global total labour in the low-exposure sectors by 18 percentage points (range −48·8 to 5·3) under a scenario of 3·0°C warming (24·8 percentage points in the high-exposure sectors). The reductions will be 25·9 percentage points (–48·8 to 2·7) in Africa, 18·6 percentage points (–33·6 to 5·3) in Asia, and 10·4 percentage points (–35·0 to 2·6) in the Americas in the low-exposure sectors. These regional effects are projected to be substantially higher for labour outdoors in full sunlight compared with indoors (or outdoors in the shade) with the average reductions in total labour projected to be 32·8 percentage points (–66·3 to 1·6) in Africa, 25·0 percentage points (–66·3 to 7·0) in Asia, and 16·7 percentage points (–45·5 to 4·4) in the Americas. Interpretation: Both labour supply and productivity are projected to decrease under future climate change in most parts of the world, and particularly in tropical regions. Parts of sub-Saharan Africa, south Asia, and southeast Asia are at highest risk under future warming scenarios. The heterogeneous regional response functions suggest that it is necessary to move away from one-size-fits-all response functions to investigate the climate effect on labour. Our findings imply income and distributional consequences in terms of increased inequality and poverty, especially in low-income countries, where the labour effects are projected to be high. Funding: COST (European Cooperation in Science and Technology). © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license
  • Item
    Our future in the Anthropocene biosphere
    (Dordrecht : Springer Netherlands, 2021) Folke, Carl; Polasky, Stephen; Rockström, Johan; Galaz, Victor; Westley, Frances; Lamont, Michèle; Scheffer, Marten; Österblom, Henrik; Carpenter, Stephen R.; Chapin, F. Stuart; Seto, Karen C.; Weber, Elke U.; Crona, Beatrice I.; Daily, Gretchen C.; Dasgupta, Partha; Gaffney, Owen; Gordon, Line J.; Hoff, Holger; Levin, Simon A.; Lubchenco, Jane; Steffen, Will; Walker, Brian H.
    The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality—of rising system-wide turbulence—calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations. © 2021, The Author(s).
  • Item
    Green transition, investment horizon, and dynamic portfolio decisions
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Semmler, Willi; Lessmann, Kai; Tahri, Ibrahim; Braga, Joao Paulo; Boros, Endre
    This paper analyzes the implications of investors’ short-term oriented asset holding and portfolio decisions (or short-termism), and its consequences on green investments. We adopt a dynamic portfolio model, which contrary to conventional static mean-variance models, allows us to study optimal portfolios for different decision horizons. Our baseline model contains two assets, one asset with fluctuating returns and another asset with a constant risk-free return. The asset with fluctuating returns can arise from fossil-fuel based sectors or from clean energy related sectors. We consider different drivers of short-termism: the discount rate, the nature of discounting (exponential vs. hyperbolic), and the decision horizon of investors itself. We study first the implications of these determinants of short-termism on the portfolio wealth dynamics of the baseline model. We find that portfolio wealth declines faster with a higher discount rate, with hyperbolic discounting, and with shorter decision horizon. We extend our model to include a portfolio of two assets with fluctuating returns. For both model variants, we explore the cases where innovation efforts are spent on fossil fuel or clean energy sources. Detailing dynamic portfolio decisions in such a way may allow us for better pathways to empirical tests and may provide guidance to some online financial decision making.
  • Item
    Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis
    (Katlenburg-Lindau : Copernicus, 2020) Albrecht, Torsten; Winkelmann, Ricarda; Levermann, Anders
    The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (≈210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation–age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model–data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4±4.1 m (or 6.5±2.0×106km3 ), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet.
  • Item
    Universality in spectral condensation
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Pavithran, Induja; Unni, Vishnu R.; Varghese, Alan J.; Premraj, D.; Sujith, R. I.; Vijayan, C.; Saha, Abhishek; Marwan, Norbert; Kurths, Jürgen
    Self-organization is the spontaneous formation of spatial, temporal, or spatiotemporal patterns in complex systems far from equilibrium. During such self-organization, energy distributed in a broadband of frequencies gets condensed into a dominant mode, analogous to a condensation phenomenon. We call this phenomenon spectral condensation and study its occurrence in fluid mechanical, optical and electronic systems. We define a set of spectral measures to quantify this condensation spanning several dynamical systems. Further, we uncover an inverse power law behaviour of spectral measures with the power corresponding to the dominant peak in the power spectrum in all the aforementioned systems.
  • Item
    Dynamic Network Characteristics of Power-electronics-based Power Systems
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Ji, Yuxi; He, Wei; Cheng, Shijie; Kurths, Jürgen; Zhan, Meng
    Power flow studies in traditional power systems aim to uncover the stationary relationship between voltage amplitude and phase and active and reactive powers; they are important for both stationary and dynamic power system analysis. With the increasing penetration of large-scale power electronics devices including renewable generations interfaced with converters, the power systems become gradually power-electronics-dominant and correspondingly their dynamical behavior changes substantially. Due to the fast dynamics of converters, such as AC current controller, the quasi-stationary state approximation, which has been widely used in power systems, is no longer appropriate and should be reexamined. In this paper, for a better description of network characteristics, we develop a novel concept of dynamic power flow and uncover an explicit dynamic relation between the instantaneous powers and the voltage vectors. This mathematical relation has been well verified by simulations on transient analysis of a small power-electronics-based power system, and a small-signal frequency-domain stability analysis of a voltage source converter connected to an infinitely strong bus. These results demonstrate the applicability of the proposed method and shed an improved light on our understanding of power-electronics-dominant power systems, whose dynamical nature remains obscure.
  • Item
    Spatiotemporal variation in risk of Shigella infection in childhood: a global risk mapping and prediction model using individual participant data
    (Oxford : Elsevier, 2023) Badr, Hamada S.; Colston, Josh M.; Nguyen, Nhat-Lan H.; Chen, Yen Ting; Burnett, Eleanor; Ali, Syed Asad; Rayamajhi, Ajit; Satter, Syed M.; Van Trang, Nguyen; Eibach, Daniel; Krumkamp, Ralf; May, Jürgen; Adegnika, Ayola Akim; Manouana, Gédéon Prince; Kremsner, Peter Gottfried; Chilengi, Roma; Hatyoka, Luiza; Debes, Amanda K.; Ateudjieu, Jerome; Faruque, Abu S. G.; Hossain, M. Jahangir; Kanungo, Suman; Kotloff, Karen L; Mandomando, Inácio; Nisar, M. Imran; Omore, Richard; Sow, Samba O.; Zaidi, Anita K. M.; Lambrecht, Nathalie; Adu, Bright; Page, Nicola; Platts-Mills, James A.; Mavacala Freitas, Cesar; Pelkonen, Tuula; Ashorn, Per; Maleta, Kenneth; Ahmed, Tahmeed; Bessong, Pascal; Bhutta, Zulfiqar A.; Mason, Carl; Mduma, Estomih; Olortegui, Maribel P.; Peñataro Yori, Pablo; Lima, Aldo A. M.; Kang, Gagandeep; Humphrey, Jean; Ntozini, Robert; Prendergast, Andrew J.; Okada, Kazuhisa; Wongboot, Warawan; Langeland, Nina; Moyo, Sabrina J.; Gaensbauer, James; Melgar, Mario; Freeman, Matthew; Chard, Anna N.; Thongpaseuth, Vonethalom; Houpt, Eric; Zaitchik, Benjamin F.; Kosek, Margaret N.
    BACKGROUND: Diarrhoeal disease is a leading cause of childhood illness and death globally, and Shigella is a major aetiological contributor for which a vaccine might soon be available. The primary objective of this study was to model the spatiotemporal variation in paediatric Shigella infection and map its predicted prevalence across low-income and middle-income countries (LMICs). METHODS: Individual participant data for Shigella positivity in stool samples were sourced from multiple LMIC-based studies of children aged 59 months or younger. Covariates included household-level and participant-level factors ascertained by study investigators and environmental and hydrometeorological variables extracted from various data products at georeferenced child locations. Multivariate models were fitted and prevalence predictions obtained by syndrome and age stratum. FINDINGS: 20 studies from 23 countries (including locations in Central America and South America, sub-Saharan Africa, and south and southeast Asia) contributed 66 563 sample results. Age, symptom status, and study design contributed most to model performance followed by temperature, wind speed, relative humidity, and soil moisture. Probability of Shigella infection exceeded 20% when both precipitation and soil moisture were above average and had a 43% peak in uncomplicated diarrhoea cases at 33°C temperatures, above which it decreased. Compared with unimproved sanitation, improved sanitation decreased the odds of Shigella infection by 19% (odds ratio [OR]=0·81 [95% CI 0·76-0·86]) and open defecation decreased them by 18% (OR=0·82 [0·76-0·88]). INTERPRETATION: The distribution of Shigella is more sensitive to climatological factors, such as temperature, than previously recognised. Conditions in much of sub-Saharan Africa are particularly propitious for Shigella transmission, although hotspots also occur in South America and Central America, the Ganges-Brahmaputra Delta, and the island of New Guinea. These findings can inform prioritisation of populations for future vaccine trials and campaigns. FUNDING: NASA, National Institutes of Health-The National Institute of Allergy and Infectious Diseases, and Bill & Melinda Gates Foundation.
  • Item
    Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study
    (Amsterdam : Elsevier, 2021) Zhao, Qi; Guo, Yuming; Ye, Tingting; Gasparrini, Antonio; Tong, Shilu; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Analitis, Antonis; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Armstrong, Ben; Forsberg, Bertil; Pan, Shih-Chun; Íñiguez, Carmen; Ameling, Caroline; De la Cruz Valencia, César; Åström, Christofer; Houthuijs, Danny; Dung, Do Van; Royé, Dominic; Indermitte, Ene; Lavigne, Eric; Mayvaneh, Fatemeh; Acquaotta, Fiorella; de'Donato, Francesca; Di Ruscio, Francesco; Sera, Francesco; Carrasco-Escobar, Gabriel; Kan, Haidong; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Madureira, Joana; Schwartz, Joel; Jaakkola, Jouni J. K.; Katsouyanni, Klea; Hurtado Diaz, Magali; Ragettli, Martina S.; Hashizume, Masahiro; Pascal, Mathilde; de Sousa Zanotti Stagliorio Coélho, Micheline; Valdés Ortega, Nicolás; Ryti, Niilo; Scovronick, Noah; Michelozzi, Paola; Matus Correa, Patricia; Goodman, Patrick; Nascimento Saldiva, Paulo Hilario; Abrutzky, Rosana; Osorio, Samuel; Rao, Shilpa; Fratianni, Simona; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Guo, Yue Leon; Bell, Michelle L.; Li, Shanshan
    Background: Exposure to cold or hot temperatures is associated with premature deaths. We aimed to evaluate the global, regional, and national mortality burden associated with non-optimal ambient temperatures. Methods: In this modelling study, we collected time-series data on mortality and ambient temperatures from 750 locations in 43 countries and five meta-predictors at a grid size of 0·5° × 0·5° across the globe. A three-stage analysis strategy was used. First, the temperature–mortality association was fitted for each location by use of a time-series regression. Second, a multivariate meta-regression model was built between location-specific estimates and meta-predictors. Finally, the grid-specific temperature–mortality association between 2000 and 2019 was predicted by use of the fitted meta-regression and the grid-specific meta-predictors. Excess deaths due to non-optimal temperatures, the ratio between annual excess deaths and all deaths of a year (the excess death ratio), and the death rate per 100 000 residents were then calculated for each grid across the world. Grids were divided according to regional groupings of the UN Statistics Division. Findings: Globally, 5 083 173 deaths (95% empirical CI [eCI] 4 087 967–5 965 520) were associated with non-optimal temperatures per year, accounting for 9·43% (95% eCI 7·58–11·07) of all deaths (8·52% [6·19–10·47] were cold-related and 0·91% [0·56–1·36] were heat-related). There were 74 temperature-related excess deaths per 100 000 residents (95% eCI 60–87). The mortality burden varied geographically. Of all excess deaths, 2 617 322 (51·49%) occurred in Asia. Eastern Europe had the highest heat-related excess death rate and Sub-Saharan Africa had the highest cold-related excess death rate. From 2000–03 to 2016–19, the global cold-related excess death ratio changed by −0·51 percentage points (95% eCI −0·61 to −0·42) and the global heat-related excess death ratio increased by 0·21 percentage points (0·13–0·31), leading to a net reduction in the overall ratio. The largest decline in overall excess death ratio occurred in South-eastern Asia, whereas excess death ratio fluctuated in Southern Asia and Europe. Interpretation: Non-optimal temperatures are associated with a substantial mortality burden, which varies spatiotemporally. Our findings will benefit international, national, and local communities in developing preparedness and prevention strategies to reduce weather-related impacts immediately and under climate change scenarios. Funding: Australian Research Council and the Australian National Health and Medical Research Council. © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  • Item
    Future tree survival in European forests depends on understorey tree diversity
    (London : Nature Publishing Group, 2022) Billing, Maik; Thonicke, Kirsten; Sakschewski, Boris; Bloh, Werner von; Walz, Ariane
    Climate change heavily threatens forest ecosystems worldwide and there is urgent need to understand what controls tree survival and forests stability. There is evidence that biodiversity can enhance ecosystem stability (Loreau and de Mazancourt in Ecol Lett 16:106–115, 2013; McCann in Nature 405:228–233, 2000), however it remains largely unclear whether this also holds for climate change and what aspects of biodiversity might be most important. Here we apply machine learning to outputs of a flexible-trait Dynamic Global Vegetation Model to unravel the effects of enhanced functional tree trait diversity and its sub-components on climate-change resistance of temperate forests (http://www.pik-potsdam.de/~billing/video/Forest_Resistance_LPJmLFIT.mp4). We find that functional tree trait diversity enhances forest resistance. We explain this with 1. stronger complementarity effects (~ 25% importance) especially improving the survival of trees in the understorey of up to + 16.8% (± 1.6%) and 2. environmental and competitive filtering of trees better adapted to future climate (40–87% importance). We conclude that forests containing functionally diverse trees better resist and adapt to future conditions. In this context, we especially highlight the role of functionally diverse understorey trees as they provide the fundament for better survival of young trees and filtering of resistant tree individuals in the future.