Search Results

Now showing 1 - 2 of 2
  • Item
    Element-specific magnetization dynamics of complex magnetic systems probed by ultrafast magneto-optical spectroscopy
    (Basel : MDPI, 2020) Korff Schmising, Clemens von; Willems, Felix; Sharma, Sangeeta; Yao, Kelvin; Borchert, Martin; Hennecke, Martin; Schick, Daniel; Radu, Ilie; Strüber, Christian; Engel, Dieter W.; Shokeen, Vishal; Buck, Jens; Bagschik, Kai; Viefhaus, Jens; Hartmann, Gregor; Manschwetus, Bastian; Grunewald, Soeren; Düsterer, Stefan; Jal, Emmanuelle; Vodungbo, Boris; Lüning, Jan; Eisebitt, Stefan
    The vision to manipulate and control magnetism with light is driven on the one hand by fundamental questions of direct and indirect photon-spin interactions, and on the other hand by the necessity to cope with ever growing data volumes, requiring radically new approaches on how to write, read and process information. Here, we present two complementary experimental geometries to access the element-specific magnetization dynamics of complex magnetic systems via ultrafast magneto-optical spectroscopy in the extreme ultraviolet spectral range. First, we employ linearly polarized radiation of a free electron laser facility to demonstrate decoupled dynamics of the two sublattices of an FeGd alloy, a prerequisite for all-optical magnetization switching. Second, we use circularly polarized radiation generated in a laboratory-based high harmonic generation setup to show optical inter-site spin transfer in a CoPt alloy, a mechanism which only very recently has been predicted to mediate ultrafast metamagnetic phase transitions. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Ultrashort vortex pulses with controlled spectral gouy rotation
    (Basel : MDPI, 2020) Liebmann, Max; Treffer, Alexander; Bock, Martin; Wallrabe, Ulrike; Grunwald, Ruediger
    Recently, the spatio-spectral propagation dynamic of ultrashort-pulsed vortex beams was demonstrated by 2D mapping of spectral moments. The rotation of characteristic anomalies, so-called "spectral eyes", was explained by wavelength-dependent Gouy phase shift. Controlling of this spectral rotation is essential for specific applications, e.g., communication and processing. Here, we report on advanced concepts for spectral rotational control and related first-proof-of-principle experiments. The speed of rotation of spectral eyes during propagation is shown to be essentially determined by angular and spectral parameters. The performance of fixed diffractive optical elements (DOE) and programmable liquid-crystal-on silicon spatial light modulators (LCoS-SLMs) that act as spiral phase gratings (SPG) or spiral phase plates (SPP) is compared. The approach is extended to radially chirped SPGs inducing axially variable angular velocity. The generation of time-dependent orbital angular momentum (self-torque) by superimposing multiple vortex pulses is proposed. © 2020 by the authors.