Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions

2021, Malerz, Sebastian, Trinter, Florian, Hergenhahn, Uwe, Ghrist, Aaron, Ali, Hebatallah, Nicolas, Christophe, Saak, Clara-Magdalena, Richter, Clemens, Hartweg, Sebastian, Nahon, Laurent, Lee, Chin, Goy, Claudia, Neumark, Daniel M, Meijer, Gerard, Wilkinson, Iain, Winter, Bernd, Thürmer, Stephan

We report on the effects of electron collision and indirect ionization processes, occurring at photoexcitation and electron kinetic energies well below 30 eV, on the photoemission spectra of liquid water. We show that the nascent photoelectron spectrum and, hence, the inferred electron binding energy can only be accurately determined if electron energies are large enough that cross sections for quasi-elastic scattering processes, such as vibrational excitation, are negligible. Otherwise, quasi-elastic scattering leads to strong, down-to-few-meV kinetic energy scattering losses from the direct photoelectron features, which manifest in severely distorted intrinsic photoelectron peak shapes. The associated cross-over point from predominant (known) electronically inelastic to quasi-elastic scattering seems to arise at surprisingly large electron kinetic energies, of approximately 10–14 eV. Concomitantly, we present evidence for the onset of indirect, autoionization phenomena (occurring via superexcited states) within a few eV of the primary and secondary ionization thresholds. These processes are inferred to compete with the direct ionization channels and primarily produce low-energy photoelectrons at photon and electron impact excitation energies below ∼15 eV. Our results highlight that vibrational inelastic electron scattering processes and neutral photoexcitation and autoionization channels become increasingly important when photon and electron kinetic energies are decreased towards the ionization threshold. Correspondingly, we show that for neat water and aqueous solutions, great care must be taken when quantitatively analyzing photoelectron spectra measured too close to the ionization threshold. Such care is essential for the accurate determination of solvent and solute ionization energies as well as photoelectron branching ratios and peak magnitudes.

Loading...
Thumbnail Image
Item

Proton dynamics in molecular solvent clusters as an indicator for hydrogen bond network strength in confined geometries

2020, Saak, Clara-Magdalena, Richter, Clemens, Unger, Isaak, Mucke, Melanie, Nicolas, Christophe, Hergenhahn, Uwe, Caleman, Carl, Huttula, Marko, Patanen, Minna, Björnholm, Olle

Hydrogen bonding leads to the formation of strong, extended intermolecular networks in molecular liquids such as water. However, it is less well-known how robust the network is to environments in which surface formation or confinement effects become prominent, such as in clusters or droplets. Such systems provide a useful way to probe the robustness of the network, since the degree of confinement can be tuned by altering the cluster size, changing both the surface-to-volume ratio and the radius of curvature. To explore the formation of hydrogen bond networks in confined geometries, here we present O 1s Auger spectra of small and large clusters of water, methanol, and dimethyl ether, as well as their deuterated equivalents. The Auger spectra of the clusters and the corresponding macroscopic liquids are compared and evaluated for an isotope effect, which is due to proton dynamics within the lifetime of the core hole (proton-transfer-mediated charge-separation, PTM-CS), and can be linked to the formation of a hydrogen bond network in the system. An isotope effect is observed in water and methanol but not for dimethyl ether, which cannot donate a hydrogen bond at its oxygen site. The isotope effect, and therefore the strength of the hydrogen bond network, is more pronounced in water than in methanol. Its value depends on the average size of the cluster, indicating that confinement effects change proton dynamics in the core ionised excited state.

Loading...
Thumbnail Image
Item

Properties of gaseous closo-[B6X6]2− dianions (X = Cl, Br, I)

2020, Rohdenburg, Markus, Yang, Zheng, Su, Pei, Bernhardt, Eduard, Yuan, Qinqin, Apra, Edoardo, Grabowsky, Simon, Laskin, Julia, Jenne, Carsten, Wang, Xue-Bin, Warneke, Jonas

Electronic structure, collision-induced dissociation (CID) and bond properties of closo-[B6X6]2− (X = Cl–I) are investigated in direct comparison with their closo-[B12X12]2− analogues. Photoelectron spectroscopy (PES) and theoretical investigations reveal that [B6X6]2− dianions are electronically significantly less stable than the corresponding [B12X12]2− species. Although [B6Cl6]2− is slightly electronically unstable, [B6Br6]2− and [B6I6]2− are intrinsically stable dianions. Consistent with the trend in the electron detachment energy, loss of an electron (e− loss) is observed in CID of [B6X6]2− (X = Cl, Br) but not for [B6I6]2−. Halogenide loss (X− loss) is common for [B6X6]2− (X = Br, I) and [B12X12]2− (X = Cl, Br, I). Meanwhile, X˙ loss is only observed for [B12X12]2− (X = Br, I) species. The calculated reaction enthalpies of the three competing dissociation pathways (e−, X− and X˙ loss) indicated a strong influence of kinetic factors on the observed fragmentation patterns. The repulsive Coulomb barrier (RCB) determines the transition state for the e− and X− losses. A significantly lower RCB for X− loss than for e− loss was found in both experimental and theoretical investigations and can be rationalized by the recently introduced concept of electrophilic anions. The positive reaction enthalpies for X− losses are significantly lower for [B6X6]2− than for [B12X12]2−, while enthalpies for X˙ losses are higher. These observations are consistent with a difference in bond character of the B–X bonds in [B6X6]2− and [B12X12]2−. A complementary bonding analysis using QTAIM, NPA and ELI-D based methods suggests that B–X bonds in [B12X12]2− have a stronger covalent character than in [B6X6]2−, in which X has a stronger halide character.