Search Results

Now showing 1 - 10 of 41
  • Item
    Nitrous oxide emissions from winter oilseed rape cultivation
    (Amsterdam [u.a.] : Elsevier, 2017) Ruser, Reiner; Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Köbke, Sarah; Räbiger, Thomas; Quinones, Teresa Suarez; Augustin, Jürgen; Christen, Olaf; Dittert, Klaus; Kage, Henning; Lewandowski, Iris; Prochnow, Annette; Stichnothe, Heinz; Flessa, Heinz
    Winter oilseed rape (Brassica napus L., WOSR) is the major oil crop cultivated in Europe. Rapeseed oil is predominantly used for production of biodiesel. The framework of the European Renewable Energy Directive requires that use of biofuels achieves GHG savings of at least 50% compared to use of fossil fuel starting in 2018. However, N2O field emissions are estimated using emission factors that are not specific for the crop and associated with strong uncertainty. N2O field emissions are controlled by N fertilization and dominate the GHG balance of WOSR cropping due to the high global warming potential of N2O. Thus, field experiments were conducted to increase the data basis and subsequently derive a new WOSR-specific emission factor. N2O emissions and crop yields were monitored for three years over a range of N fertilization intensities at five study sites representative of German WOSR production. N2O fluxes exhibited the typical high spatial and temporal variability in dependence on soil texture, weather and nitrogen availability. The annual N2O emissions ranged between 0.24 kg and 5.48 kg N2O-N ha−1 a−1. N fertilization increased N2O emissions, particularly with the highest N treatment (240 kg N ha−1). Oil yield increased up to a fertilizer amount of 120 kg N ha−1, higher N-doses increased grain yield but decreased oil concentrations in the seeds. Consequently oil yield remained constant at higher N fertilization. Since, yield-related emission also increased exponentially with N surpluses, there is potential for reduction of the N fertilizer rate, which offers perspectives for the mitigation of GHG emissions. Our measurements double the published data basis of annual N2O flux measurements in WOSR. Based on this extended dataset we modeled the relationship between N2O emissions and fertilizer N input using an exponential model. The corresponding new N2O emission factor was 0.6% of applied fertilizer N for a common N fertilizer amount under best management practice in WOSR production (200 kg N ha−1 a−1). This factor is substantially lower than the linear IPCC Tier 1 factor (EF1) of 1.0% and other models that have been proposed. © 2017
  • Item
    Ammonia and greenhouse gas emissions from slurry storage : A review
    (Amsterdam [u.a.] : Elsevier, 2020) Kupper, Thomas; Häni, Christoph; Neftel, Albrecht; Kincaid, Chris; Bühler, Marcel; Amon, Barbara; VanderZaag, Andrew
    Storage of slurry is an important emission source for ammonia (NH3), nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) and hydrogen sulfide (H2S) from livestock production. Therefore, this study collected published emission data from stored cattle and pig slurry to determine baseline emission values and emission changes due to slurry treatment and coverage of stores. Emission data were collected from 120 papers yielding 711 records of measurements conducted at farm-, pilot- and laboratory-scale. The emission data reported in a multitude of units were standardized and compiled in a database. Descriptive statistics of the data from untreated slurry stored uncovered revealed a large variability in emissions for all gases. To determine baseline emissions, average values based on a weighting of the emission data according to the season and the duration of the emission measurements were constructed using the data from farm-scale and pilot-scale studies. Baseline emissions for cattle and pig slurry stored uncovered were calculated. When possible, it was further distinguished between storage in tanks without slurry treatment and storage in lagoons which implies solid-liquid separation and biological treatment. The baseline emissions on an area or volume basis are: for NH3: 0.12 g m−2 h-1 and 0.15 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 0.08 g m−2 h-1 and 0.24 g m−2 h-1 for cattle and pig slurry stored in tanks; for N2O: 0.0003 g m−2 h-1 for cattle slurry stored in lagoons, and 0.002 g m−2 h-1 for both slurry types stored in tanks; for CH4: 0.95 g m-3 h-1 and 3.5 g m-3 h-1 for cattle and pig slurry stored in lagoons, and 0.58 g m-3 h-1 and 0.68 g m-3 h-1 for cattle and pig slurry stored in tanks; for CO2: 6.6 g m−2 h-1 and 0.3 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 8.0 g m−2 h-1 for both slurry types stored in tanks; for H2S: 0.04 g m−2 h-1 and 0.01 g m−2 h-1 for cattle and pig slurry stored in lagoons. Related to total ammoniacal nitrogen (TAN), baseline emissions for tanks are 16% and 15% of TAN for cattle and pig slurry, respectively. Emissions of N2O and CH4 relative to nitrogen (N) and volatile solids (VS) are 0.13% of N and 0.10% of N and 2.9% of VS and 4.7% of VS for cattle and pig slurry, respectively. Total greenhouse gas emissions from slurry stores are dominated by CH4. The records on slurry treatment using acidification show a reduction of NH3 and CH4 emissions during storage while an increase occurs for N2O and a minor change for CO2 as compared to untreated slurry. Solid-liquid separation causes higher losses for NH3 and a reduction in CH4, N2O and CO2 emissions. Anaerobically digested slurry shows higher emissions during storage for NH3 while losses tend to be lower for CH4 and little changes occur for N2O and CO2 compared to untreated slurry. All cover types are found to be efficient for emission mitigation of NH3 from stores. The N2O emissions increase in many cases due to coverage. Lower CH4 emissions occur for impermeable covers as compared to uncovered slurry storage while for permeable covers the effect is unclear or emissions tend to increase. Limited and inconsistent data regarding emission changes with covering stores are available for CO2 and H2S. The compiled data provide a basis for improving emission inventories and highlight the need for further research to reduce uncertainty and fill data gaps regarding emissions from slurry storage.
  • Item
    The impact of atmospheric boundary layer, opening configuration and presence of animals on the ventilation of a cattle barn
    (Amsterdam [u.a.] : Elsevier Science, 2020) Nosek, Štěpán; Kluková, Zuzana; Jakubcová, Michaela; Yi, Qianying; Janke, David; Demeyer, Peter; Jaňour, Zbyněk
    Naturally ventilated livestock buildings (NVLB) represent one of the most significant sources of ammonia emissions. However, even the dispersion of passive gas in an NVLB is still not well understood. In this paper, we present a detailed investigation of passive pollutant dispersion in a model of a cattle barn using the wind tunnel experiment method. We simulated the pollution of the barn by a ground-level planar source. We used the time-resolved particle image velocimetry (TR-PIV) and the fast flame ionisation detector (FFID) to study the flow and dispersion processes at high spatial and temporal resolution. We employed the Proper Orthogonal Decomposition (POD) and Oscillating Patterns Decomposition (OPD) methods to detect the coherent structures of the flow. The results show that the type of atmospheric boundary layer (ABL) and sidewall opening height have a significant impact on the pollutant dispersion in the barn, while the presence of animals and doors openings are insignificant under conditions of winds perpendicular to the sidewall openings. We found that the dynamic coherent structures, developed by the Kelvin-Helmholtz instability, contribute to the pollutant transport in the barn. We demonstrate that in any of the studied cases the pollutant was not well mixed within the barn and that a significant underestimation (up to by a factor 3) of the barn ventilation might be obtained using, e.g. tracer gas method. © 2020 The Authors
  • Item
    Representativeness of European biochar research: part I–field experiments
    (Vilnius : Technika, 2017) Verheijen, Frank G. A.; Mankasingh, Utra; Penizek, Vit; Panzacchi, Pietro; Glaser, Bruno; Jeffery, Simon; Bastos, Ana Catarina; Tammeorg, Priit; Kern, Jürgen; Zavalloni, Costanza; Zanchettin, Giulia; Sakrabani, Ruben
    A representativeness survey of existing European Biochar field experiments within the Biochar COST Action TD1107 was conducted to gather key information for setting up future experiments and collaborations, and to minimise duplication of efforts amongst European researchers. Woody feedstock biochar, applied without organic or inorganic fertiliser appears over-represented compared to other categories, especially considering the availability of crop residues, manures, and other organic waste streams and the efforts towards achieving a zero waste economy. Fertile arable soils were also over-represented while shallow unfertile soils were under-represented. Many of the latter are likely in agroforestry or forest plantation land use. The most studied theme was crop production. However, other themes that can provide evidence of mechanisms, as well as potential undesired side-effects, were relatively well represented. Biochar use for soil contamination remediation was the least represented theme; further work is needed to identify which specific contaminants, or mixtures of contaminants, have the potential for remediation by different biochars. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Synergistic use of peat and charred material in growing media–an option to reduce the pressure on peatlands?
    (Vilnius : Technika, 2017) Kern, Jürgen; Tammeorg, Priit; Shanskiy, Merrit; Sakrabani, Ruben; Knicker, Heike; Kammann, Claudia; Tuhkanen, Eeva-Maria; Smidt, Geerd; Prasad, Munoo; Tiilikkala, Kari; Sohi, Saran; Gascó, Gabriel; Steiner, Christoph; Glaser, Bruno
    Peat is used as a high quality substrate for growing media in horticulture. However, unsustainable peat extraction damages peatland ecosystems, which disappeared to a large extent in Central and South Europe. Furthermore, disturbed peatlands are becoming a source of greenhouse gases due to drainage and excavation. This study is the result of a workshop within the EU COST Action TD1107 (Biochar as option for sustainable resource management), held in Tartu (Estonia) in 2015. The view of stakeholders were consulted on new biochar-based growing media and to what extent peat may be replaced in growing media by new compounds like carbonaceous materials from thermochemical conversion. First positive results from laboratory and greenhouse experiments have been reported with biochar content in growing media ranging up to 50%. Various companies have already started to use biochar as an additive in their growing media formulations. Biochar might play a more important role in replacing peat in growing media, when biochar is available, meets the quality requirements, and their use is economically feasible. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Comparison of ammonia emissions related to nitrogen use efficiency of livestock production in Europe
    (Amsterdam [u.a.] : Elsevier Science, 2019) Groenestein, C.M.; Hutchings, N.J.; Haenel, H.D.; Amon, B.; Menzi, H.; Mikkelsen, M.H.; Misselbrook, T.H.; van Bruggen, C.; Kupper, T.; Webb, J.
    The increasing global demand for food and the environmental effects of reactive nitrogen losses in the food production chain, increase the need for efficient use of nitrogen (N). Of N harvested in agricultural plant products, 80% is used to feed livestock. Because the largest atmospheric loss of reactive nitrogen from livestock production systems is ammonia (NH3), the focus of this paper is on N lost as NH3 during the production of animal protein. The focus of this paper is to understand the key factors explaining differences in Nitrogen Use Efficiency (NUE) of animal production among various European countries. Therefore we developed a conceptual framework to describe the NUE defined as the amount of animal-protein N per N in feed and NH3–N losses in the production of milk, beef, pork, chicken meat and eggs in The Netherlands, Switzerland, United Kingdom, Germany, Austria and Denmark. The framework describes how manure management and animal-related parameters (feed, metabolism) relate to NH3 emissions and NUE. The results showed that the animal product with the lowest NUE had the largest NH3 emissions and vice versa, which agrees with the reciprocal relationship between NUE and NH3 within the conceptual framework. Across animal products for the countries considered, about 20% of the N in feed is lost as NH3. The significant smallest proportion (12%) of NH3–N per unit of Nfeed is from chicken production. The proportions for other products are 17%, 19%, 20% and 22% for milk, pork, eggs and beef respectively. These differences were not significantly different due to the differences among countries. For all countries, NUE was lowest for beef and highest for chicken. The production of 1 kg N in beef required about 5 kg N in feed, of which 1 kg N was lost as NH3–N. For the production of 1 kg N in chicken meat, 2 kg N in feed was required and 0.2 kg was lost as NH3. The production of 1 kg N in milk required 4 kg N in feed with 0.6 kg NH3–N loss, the same as pork and eggs, but those needed 3 and 3.5 kg N in feed per kg N in product respectively. Except for beef, the differences among these European countries were mainly caused by differences in manure management practices and their emission factors, rather than by animal-related factors including feed and digestibility influencing the excreted amount of ammoniacal N (TAN). For beef, both aspects caused important differences. Based on the results, we encourage the expression of N losses as per N in feed or per N in product, in addition to per animal place, when comparing production efficiency and NUE. We consider that disaggregating emission factors into a diet/animal effect and a manure management effect would improve the basis for comparing national NH3 emission inventories. © 2018 The Authors
  • Item
    Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs
    (Vilnius : Technika, 2017) Kammann, Claudia; Ippolito, Jim; Hagemann, Nikolas; Borchard, Nils; Cayuela, Maria Luz; Estavillo, José M.; Fuertes-Mendizabal, Teresa; Jeffery, Simon; Kern, Jürgen; Novak, Jeff; Rasse, Daniel; Saarnio, Sanna; Schmidt, Hans-Peter; Spokas, Kurt; Wrage-Mönnig, Nicole
    Agriculture and land use change has significantly increased atmospheric emissions of the non-CO2 green-house gases (GHG) nitrous oxide (N2O) and methane (CH4). Since human nutritional and bioenergy needs continue to increase, at a shrinking global land area for production, novel land management strategies are required that reduce the GHG footprint per unit of yield. Here we review the potential of biochar to reduce N2O and CH4 emissions from agricultural practices including potential mechanisms behind observed effects. Furthermore, we investigate alternative uses of biochar in agricultural land management that may significantly reduce the GHG-emissions-per-unit-of-product footprint, such as (i) pyrolysis of manures as hygienic alternative to direct soil application, (ii) using biochar as fertilizer carrier matrix for underfoot fertilization, biochar use (iii) as composting additive or (iv) as feed additive in animal husbandry or for manure treatment. We conclude that the largest future research needs lay in conducting life-cycle GHG assessments when using biochar as an on-farm management tool for nutrient-rich biomass waste streams. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production
    (Amsterdam [u.a.] : Elsevier Science, 2020) Kreidenweis, Ulrich; Breier, Jannes; Herrmann, Christiane; Libra, Judy; Prochnow, Annette
    The production of broiler meat has increased significantly in the last decades in Germany and worldwide, and is projected to increase further in the future. As the number of animals raised increases, so too does the amount of manure produced. The identification of manure treatment options that cause low greenhouse gas emissions becomes ever more important. This study compares four treatment options for broiler manure followed by field spreading: storage before distribution, composting, anaerobic digestion in a biogas plant and production of biochar. For these options potential direct and indirect greenhouse gas emissions were assessed for the situation in Germany. Previous analyses have shown that greenhouse gas balances of manure management are often strongly influenced by a small number of processes. Therefore, in this study major processes were represented with several variants and the sensitivity of model results to different management decisions and uncertain parameters was assessed. In doing so, correlations between processes were considered, in which higher emissions earlier on in the process chain reduce emissions later. The results show that biogas production from broiler manure leads to the lowest greenhouse gas emissions in most of the analysed cases, mainly due to the emission savings related to the substitution of mineral fertilizers and the production of electricity. Pyrolysis of the manure and subsequent field spreading as a soil amendment can lead to similarly low emissions due to the long residence time of the biochar, and may even be the better option than poorly managed biogas production. Composting is the treatment option resulting in highest emissions of greenhouse gases, due to high ammonia volatilization, and is likely worse than untreated storage in this respect. These results are relatively insensitive to the length of transport required for field spreading, but high uncertainties are associated with the use of emission factors.
  • Item
    Representativeness of European biochar research: part II–pot and laboratory studies
    (Vilnius : Technika, 2017) Sakrabani, Ruben; Kern, Jürgen; Mankasingh, Utra; Zavalloni, Costanza; Zanchettin, Giulia; Bastos, Ana Catarina; Tammeorg, Priit; Jeffery, Simon; Glaser, Bruno; Verheijen, Frank G. A.
    Biochar research is extensive and there are many pot and laboratory studies carried out in Europe to investigate the mechanistic understanding that govern its impact on soil processes. A survey was conducted in order to find out how representative these studies under controlled experimental conditions are of actual environmental conditions in Europe and biomass availability and conversion technologies. The survey consisted of various key questions related to types of soil and biochar used, experimental conditions and effects of biochar additions on soil chemical, biological and physical properties. This representativeness study showed that soil texture and soil organic carbon contents used by researchers are well reflected in the current biochar research in Europe (through comparison with published literature), but less so for soil pH and soil type. This study provides scope for future work to complement existing research findings, avoiding unnecessary repetitions and highlighting existing research gaps. © 2017 The Author(s) Published by VGTU Press and Informa UK Limited, [trading as Taylor & Francis Group].
  • Item
    Editorial: special issue on biochar as an option for sustainable resource management (EU COST Action TD1107 final publication)
    (Vilnius : Technika, 2017) Glaser, Bruno; Baltrėnas, Pranas; Kammann, Claudia; Kern, Jürgen; Baltrėnaitė, Edita
    The articles appearing in this special issue on Biochar as an Option for Sustainable Resource Management are mainly the extended versions of the contributions presented in Biochar COST Action meetings, especially at the International Biochar conference held September 2015 at Geisenheim University (Germany), which was the final conference of the COST Action TD1107. © 2017 Vilnius Gediminas Technical University (VGTU) Press.