Search Results

Now showing 1 - 10 of 16
Loading...
Thumbnail Image
Item

Confined crystals of the smallest phase-change material

2013, Giusca, C.E., Stolojan, V., Sloan, J., Börrnert, F., Shiozawa, H., Sader, K., Rümmeli, M.H., Büchner, B., Silva, S.R.P.

The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.

Loading...
Thumbnail Image
Item

X-ray diffraction reveals the amount of strain and homogeneity of extremely bent single nanowires

2020, Davtyan, Arman, Kriegner, Dominik, Holý, Václav, AlHassan, Ali, Lewis, Ryan B., McDermott, Spencer, Geelhaar, Lutz, Bahrami, Danial, Anjum, Taseer, Ren, Zhe, Richter, Carsten, Novikov, Dmitri, Müller, Julian, Butz, Benjamin, Pietsch, Ullrich

Core-shell nanowires (NWs) with asymmetric shells allow for strain engineering of NW properties because of the bending resulting from the lattice mismatch between core and shell material. The bending of NWs can be readily observed by electron microscopy. Using X-ray diffraction analysis with a micro- and nano-focused beam, the bending radii found by the microscopic investigations are confirmed and the strain in the NW core is analyzed. For that purpose, a kinematical diffraction theory for highly bent crystals is developed. The homogeneity of the bending and strain is studied along the growth axis of the NWs, and it is found that the lower parts, i.e. close to the substrate/wire interface, are bent less than the parts further up. Extreme bending radii down to ∼3 μm resulting in strain variation of ∼2.5% in the NW core are found. © 2020.

Loading...
Thumbnail Image
Item

Nanoscale spectroscopic imaging of GaAs-AlGaAs quantum well tube nanowires: Correlating luminescence with nanowire size and inner multishell structure

2019, Prete, P., Wolf, D., Marzo, F., Lovergine, N.

The luminescence and inner structure of GaAs-AlGaAs quantum well tube (QWT) nanowires were studied using lowerature cathodoluminescence (CL) spectroscopic imaging, in combination with scanning transmission electron microscopy (STEM) tomography, allowing for the first time a robust correlation between the luminescence properties of these nanowires and their size and inner 3D structure down to the nanoscale. Besides the core luminescence and minor defects-related contributions, each nanowire showed one or more QWT peaks associated with nanowire regions of different diameters. The values of the GaAs shell thickness corresponding to each QWT peak were then determined from the nanowire diameters by employing a multishell growth model upon validation against experimental data (core diameter and GaAs and AlGaAs shell thickness) obtained from the analysis of the 3D reconstructed STEM tomogram of a GaAs-AlGaAs QWT nanowire. We found that QWT peak energies as a function of thus-estimated (3-7 nm) GaAs shell thickness are 40-120 meV below the theoretical values of exciton recombination for uniform QWTs symmetrically wrapped around a central core. However, the analysis of the 3D tomogram further evidenced azimuthal asymmetries as well as (azimuthal and axial) random fluctuations of the GaAs shell thickness, suggesting that the red-shift of QWT emissions is prominently due to carrier localization. The CL mapping of QWT emission intensities along the nanowire axis allowed to directly image the nanoscale localization of the emission, supporting the above picture. Our findings contribute to a deeper understanding of the luminescence-structure relationship in QWT nanowires and will foster their applications as efficient nanolaser sources for future monolithic integration onto silicon.

Loading...
Thumbnail Image
Item

Simultaneous magnetic field and field gradient mapping of hexagonal MnNiGa by quantitative magnetic force microscopy

2023, Freitag, Norbert H., Reiche, Christopher F., Neu, Volker, Devi, Parul, Burkhardt, Ulrich, Felser, Claudia, Wolf, Daniel, Lubk, Axel, Büchner, Bernd, Mühl, Thomas

Magnetic force microscopy (MFM) is a scanning microscopy technique that is commonly employed to probe the sample’s magnetostatic stray fields via their interaction with a magnetic probe tip. In this work, a quantitative, single-pass MFM technique is presented that maps one magnetic stray-field component and its spatial derivative at the same time. This technique uses a special cantilever design and a special high-aspect-ratio magnetic interaction tip that approximates a monopole-like moment. Experimental details, such as the control scheme, the sensor design, which enables simultaneous force and force gradient measurements, as well as the potential and limits of the monopole description of the tip moment are thoroughly discussed. To demonstrate the merit of this technique for studying complex magnetic samples it is applied to the examination of polycrystalline MnNiGa bulk samples. In these experiments, the focus lies on mapping and analyzing the stray-field distribution of individual bubble-like magnetization patterns in a centrosymmetric [001] MnNiGa phase. The experimental data is compared to calculated and simulated stray-field distributions of 3D magnetization textures, and, furthermore, bubble dimensions including diameters are evaluated. The results indicate that the magnetic bubbles have a significant spatial extent in depth and a buried bubble top base.

Loading...
Thumbnail Image
Item

In situ Raman spectroscopy on silicon nanowire anodes integrated in lithium ion batteries

2019, Krause, A., Tkacheva, O., Omar, A., Langklotz, U., Giebeler, L., Dörfler, S., Fauth, F., Mikolajick, T., Weber, W.M.

Rapid decay of silicon anodes during lithiation poses a significant challenge in application of silicon as an anode material in lithium ion batteries. In situ Raman spectroscopy is a powerful method to study the relationship between structural and electrochemical data during electrode cycling and to allow the observation of amorphous as well as liquid and transient species in a battery cell. Herein, we present in situ Raman spectroscopy on high capacity electrode using uncoated and carbon-coated silicon nanowires during first lithiation and delithiation cycle in an optimized lithium ion battery setup and complement the results with operando X-ray reflection diffraction measurements. During lithiation, we were able to detect a new Raman signal at 1859 cm−1 especially on uncoated silicon nanowires. The detailed in situ Raman measurement of the first lithiation/delithiation cycle allowed to differentiate between morphology changes of the electrode as well as interphase formation from electrolyte components.

Loading...
Thumbnail Image
Item

Correction: Electrochemically deposited nanocrystalline InSb thin films and their electrical properties (Journal of Materials Chemistry C (2016) 4 (1345-1350) DOI: 10.1039/C5TC03656A)

2019, Hnida, K.E., Bäßler, S., Mech, J., Szaciłowski, K., Socha, R.P., Gajewska, M., Nielsch, K., Przybylski, M., Sulka, G.D.

There was an error in eqn (3) which was reproduced from the literature and used for the interpretation of the results. The calculations (using the equations from an original work from 1987) were done according the correct version of eqn (3) presented below:. (Table Presented). © 2019 The Royal Society of Chemistry.

Loading...
Thumbnail Image
Item

Electrodeposition of Fe70Pd30 nanowires from a complexed ammonium-sulfosalicylic electrolyte with high stability

2010, Haehnel, V., Fähler, S., Schultz, L., Schlörb, H.

A highly stable plating bath for the electrodeposition of Fe-Pd nanowires into nanoporous alumina templates has been developed. Complexing of both metal ions and exchanging Fe2+ by Fe3+ avoid chemical reduction of Pd ions and, therefore, undesirable deposition. By using a pulse potential mode and appropriate adjustment of deposition potentials homogeneously filled templates without surface deposits and nanowires close to the desired composition of Fe70Pd30 have been achieved. These alloy nanowires represent a key step towards nanoactuators based on magnetic shape memory alloys. © 2010 Elsevier B.V. All rights reserved.

Loading...
Thumbnail Image
Item

Electrochemically deposited nanocrystalline InSb thin films and their electrical properties

2016, Hnida, K.E., Bäßler, S., Mech, J., Szaciłowski, K., Socha, R.P., Gajewska, M., Nielsch, K., Przybylski, M., Sulka, G.D.

We present an electrochemical route to prepare nanocrystalline InSb thin films that can be transferred to an industrial scale. The morphology, composition, and crystallinity of the prepared uniform and compact thin films with a surface area of around 1 cm2 were investigated. The essential electrical characteristics such as conductivity, Seebeck coefficient, the type, concentration and mobility of charge carriers have been examined and compared with InSb nanowires obtained in the same system for electrochemical deposition (fixed pulse sequence, temperature, electrolyte composition, and system geometry). Moreover, obtained thin films show much higher band gap energy (0.53 eV) compared to the bulk material (0.17 eV) and InSb nanowires (0.195 eV).

Loading...
Thumbnail Image
Item

Two-step magnetization reversal FORC fingerprint of coupled bi-segmented Ni/Co magnetic nanowire arrays

2018, Fernández, J.G., Martínez, V.V., Thomas, A., de la Prida Pidal, V.M., Nielsch, K.

First Order Reversal Curve (FORC) analysis has been established as an appropriate method to investigate the magnetic interactions among complex ferromagnetic nanostructures. In this work, the magnetization reversal mechanism of bi-segmented nanowires composed by long Co and Ni segments contacted at one side was investigated, as a model system to identify and understand the FORC fingerprint of a two-step magnetization reversal process. The resulting hysteresis loop of the bi-segmented nanowire array exhibits a completely different magnetic behavior than the one expected for the magnetization reversal process corresponding to each respective Co and Ni nanowire arrays, individually. Based on the FORC analysis, two possible magnetization reversal processes can be distinguished as a consequence of the ferromagnetic coupling at the interface between the Ni and Co segments. Depending on the relative difference between the magnetization switching fields of each segment, the softer magnetic phase induces the switching of the harder one through the injection and propagation of a magnetic domain wall when both switching fields are comparable. On the other hand, if the switching fields values differ enough, the antiparallel magnetic configuration of nanowires is also possible but energetically unfavorable, thus resulting in an unstable magnetic configuration. Making use of the different temperature dependence of the magnetic properties for each nanowire segment with different composition, one of the two types of magnetization reversal is favored, as demonstrated by FORC analyses.

Loading...
Thumbnail Image
Item

Holographic vector field electron tomography of three-dimensional nanomagnets

2019, Wolf, D., Biziere, N., Sturm, S., Reyes, D., Wade, T., Niermann, T., Krehl, J., Warot-Fonrose, B., Büchner, B., Snoeck, E., Gatel, C., Lubk, A.

Complex 3D magnetic textures in nanomagnets exhibit rich physical properties, e.g., in their dynamic interaction with external fields and currents, and play an increasing role for current technological challenges such as energy-efficient memory devices. To study these magnetic nanostructures including their dependency on geometry, composition, and crystallinity, a 3D characterization of the magnetic field with nanometer spatial resolution is indispensable. Here we show how holographic vector field electron tomography can reconstruct all three components of magnetic induction as well as the electrostatic potential of a Co/Cu nanowire with sub 10 nm spatial resolution. We address the workflow from acquisition, via image alignment to holographic and tomographic reconstruction. Combining the obtained tomographic data with micromagnetic considerations, we derive local key magnetic characteristics, such as magnetization current or exchange stiffness, and demonstrate how magnetization configurations, such as vortex states in the Co-disks, depend on small structural variations of the as-grown nanowire.