Search Results

Now showing 1 - 10 of 15
  • Item
    Hybrid Optical Fibers – An Innovative Platform for In‐Fiber Photonic Devices
    (Weinheim : Wiley-VCH, 2015) Alexander Schmidt, Markus; Argyros, Alexander; Sorin, Fabien
    The field of hybrid optical fibers is one of the most active research areas in current fiber optics and has the vision of integrating sophisticated materials inside fibers, which are not traditionally used in fiber optics. Novel in-fiber devices with unique properties have been developed, opening up new directions for fiber optics in fields of critical interest in modern research, such as biophotonics, environmental science, optoelectronics, metamaterials, remote sensing, medicine, or quantum optics. Here the recent progress in the field of hybrid optical fibers is reviewed from an application perspective, focusing on fiber-integrated devices enabled by including novel materials inside polymer and glass fibers. The topics discussed range from nanowire-based plasmonics and hyperlenses, to integrated semiconductor devices such as optoelectronic detectors, and intense light generation unlocked by highly nonlinear hybrid waveguides.
  • Item
    Towards multiple readout application of plasmonic arrays
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2011) Cialla, D.; Weber, K.; Böhme, R.; Hübner, U.; Schneidewind, H.; Zeisberger, M.; Mattheis, R.; Möller, R.; Popp, J.
    In order to combine the advantages of fluorescence and surface-enhanced Raman spectroscopy (SERS) on the same chip platform, a nanostructured gold surface with a unique design, allowing both the sensitive detection of fluorescence light together with the specific Raman fingerprint of the fluorescent molecules, was established. This task requires the fabrication of plasmonic arrays that permit the binding of molecules of interest at different distances from the metallic surface. The most efficient SERS enhancement is achieved for molecules directly adsorbed on the metallic surface due to the strong field enhancement, but where, however, the fluorescence is quenched most efficiently. Furthermore, the fluorescence can be enhanced efficiently by careful adjustment of the optical behavior of the plasmonic arrays. In this article, the simultaneous application of SERS and fluorescence, through the use of various gold nanostructured arrays, is demonstrated by the realization of a DNA detection scheme. The results shown open the way to more flexible use of plasmonic arrays in bioanalytics.
  • Item
    Resonant terahertz light absorption by virtue of tunable hybrid interface phonon-plasmon modes in semiconductor nanoshells
    (Basel : MDPI AG, 2019) Nika, D.L.; Pokatilov, E.P.; Fomin, V.M.; Devreese, J.T.; Tempere, J.
    Metallic nanoshells have proven to be particularly versatile, with applications in biomedical imaging and surface-enhanced Raman spectroscopy. Here, we theoretically demonstrate that hybrid phonon-plasmon modes in semiconductor nanoshells offer similar advantages in the terahertz regime. We show that, depending on tm,n,nhe doping of the semiconductor shells, terahertz light absorption in these nanostructures can be resonantly enhanced due to the strong coupling between interface plasmons and phonons. A threefold to fourfold increase in the absorption peak intensity was achieved at specific values of electron concentration. Doping, as well as adapting the nanoshell radius, allowed for fine-tuning of the absorption peak frequencies.
  • Item
    Evolution of the charge carrier plasmon in the one-dimensional metal TTF-TCNQ as a function of temperature and momentum
    (Bristol : Institute of Physics Publishing, 2019) Kovbasa, N.; Graf, L.; Knupfer, M.
    We have investigated the charge carrier plasmon in the quasi one-dimensional metal TTF-TCNQ using electron energy-loss spectroscopy. Our data reveal a negative plasmon dispersion with a slope that is independent of temperature, which is in agreement to predictions from model calculations and previous room temperature data. A plasmon energy shift upon temperature is observed, and we discuss possible contributions to this shift. The spectral width of the plasmon is rather temperature independent, but increases clearly above a momentum value of about 0.3 Å-1.
  • Item
    Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states
    (Washington, DC : American Chemical Society, 2014) Schell, A.W.; Engel, P.; Werra, J.F.M.; Wolff, C.; Busch, K.; Benson, O.
    Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.
  • Item
    Nanowire-supported plasmonic waveguide for remote excitation of surface-enhanced Raman scattering
    (London : Nature Publishing Group, 2014) Huang, Y.; Fang, Y.; Zhang, Z.; Zhu, L.; Sun, M.
    Due to its amazing ability to manipulate light at the nanoscale, plasmonics has become one of the most interesting topics in the field of light-matter interaction. As a promising application of plasmonics, surface-enhanced Raman scattering (SERS) has been widely used in scientific investigations and material analysis. The large enhanced Raman signals are mainly caused by the extremely enhanced electromagnetic field that results from localized surface plasmon polaritons. Recently, a novel SERS technology called remote SERS has been reported, combining both localized surface plasmon polaritons and propagating surface plasmon polaritons (PSPPs, or called plasmonic waveguide), which may be found in prominent applications in special circumstances compared to traditional local SERS. In this article, we review the mechanism of remote SERS and its development since it was first reported in 2009. Various remote metal systems based on plasmonic waveguides, such as nanoparticle-nanowire systems, single nanowire systems, crossed nanowire systems and nanowire dimer systems, are introduced, and recent novel applications, such as sensors, plasmon-driven surface-catalyzed reactions and Raman optical activity, are also presented. Furthermore, studies of remote SERS in dielectric and organic systems based on dielectric waveguides remind us that this useful technology has additional, tremendous application prospects that have not been realized in metal systems.
  • Item
    Attosecond streaking in a nano-plasmonic field
    (Bristol : IOP, 2012) Kelkensberg, F.; Koenderink, A.F.; Vrakking, M.J.J.
    A theoretical study of the application of attosecond streaking spectroscopy to time-resolved studies of the plasmonic fields surrounding isolated, resonantly excited spherical nanoparticles is presented. A classification of the different regimes in attosecond streaking is proposed and identified in our results that are derived from Mie calculations of plasmon fields, coupled to classical electron trajectory simulations. It is shown that in an attosecond streaking experiment, the electrons are almost exclusively sensitive to the component of the field parallel to the direction in which they are detected. This allows one to probe the different components of the field individually by resolving the angle of emission of the electrons. Finally, simulations based on fields calculated by finite-difference time-domain (FDTD) are compared with the results obtained using Mie fields. The two are found to be in good agreement with each other, supporting the notion that FDTD methods can be used to reliably investigate non-spherical structures.
  • Item
    Attosecond time delays in C60 valence photoemissions at the giant plasmon
    (Bristol : IOP Publ., 2015) Barillot, T.; Magrakvelidze, M.; Loriot, V.; Bordas, C.; Hervieux, P.-A.; Gisselbrecht, M.; Johnsson, P.; Laksman, J.; Mansson, E.P.; Sorensen, S.; Canton, S.E.; Dahlström, J.M.; Dixit, G.; Madjet, M.E.; Lépine, F.; Chakraborty, H.S.
    We perform time-dependent local density functional calculations of the time delay in C60 HOMO and HOMO-1 photoionization at giant plasmon energies. A semiclassical model is used to develop further insights.
  • Item
    A gold-nanotip optical fiber for plasmon-enhanced near-field detection
    (New York, NY : American Inst. of Physics, 2013) Uebel, P.; Bauerschmidt, S.T.; Schmidt, M.A.; Russell, P.St.J.
    A wet-chemical etching and mechanical cleaving technique is used to fabricate gold nanotips attached to tapered optical fibers. Localized surface plasmon resonances (tunable from 500 to 850 nm by varying the tip dimensions) are excited at the tip, and the signal is transmitted via the fiber to an optical analyzer, making the device a plasmon-enhanced near-field probe. A simple cavity model is used to explain the resonances observed in numerical simulations.
  • Item
    Gold-reinforced silver nanoprisms on optical fiber tapers - A new base for high precision sensing
    (New York : American Institute of Physics, 2016) Wieduwilt, Torsten; Zeisberger, M.; Thiele, M.; Doherty, B.; Chemnitz, M.; Csaki, A.; Fritzsche, W.; Schmidt, M.A.
    Due to their unique optical properties, metallic nanoparticles offer a great potential for important applications such as disease diagnostics, demanding highly integrated device solutions with large refractive index sensitivity. Here we introduce a new type of monolithic localized surface plasmon resonance (LSPR) waveguide sensor based on the combination of an adiabatic optical fiber taper and a high-density ensemble of immobilized gold-reinforced silver nanoprisms, showing sensitivities up to 900 nm/RIU. This result represents the highest value reported so far for a fiber optic sensor using the LSPR effect and exceeds the corresponding value of the bulk solution by a factor of two. The plasmonic resonance is efficiently excited via the evanescent field of the propagating taper mode, leading to pronounced transmission dips (−20 dB). The particle density is so high (approx. 210 particle/μm2) that neighboring particles are able to interact, boosting the sensitivity, as confirmed by qualitative infinite element simulations. We additionally introduce a qualitative model explaining the interaction of plasmon resonance and taper mode on the basis of light extinction, allowing extracting key parameters of the plasmonic taper (e.g., modal attenuation). Due to the monolithic design and the extremely high sensitivity we expect our finding to be relevant in fields such as biomedicine, disease diagnostics, and molecular sensing.