Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Starspots

2009, Strassmeier, K.G.

Starspots are created by local magnetic fields on the surfaces of stars, just as sunspots. Their fields are strong enough to suppress the overturning convective motion and thus block or redirect the flow of energy from the stellar interior outwards to the surface and consequently appear as locally cool and therefore dark regions against an otherwise bright photosphere (Biermann in Astronomische Nachrichten 264:361, 1938; Z Astrophysik 25:135, 1948). As such, starspots are observable tracers of the yet unknown internal dynamo activity and allow a glimpse into the complex internal stellar magnetic field structure. Starspots also enable the precise measurement of stellar rotation which is among the key ingredients for the expected internal magnetic topology. But whether starspots are just blown-up sunspot analogs, we do not know yet. This article is an attempt to review our current knowledge of starspots. A comparison of a white-light image of the Sun (G2V, 5 Gyr) with a Doppler image of a young solar-like star (EK Draconis; G1.5V, age 100 Myr, rotation 10 × Ω Sun) and with a mean-field dynamo simulation suggests that starspots can be of significantly different appearance and cannot be explained with a scaling of the solar model, even for a star of same mass and effective temperature. Starspots, their surface location and migration pattern, and their link with the stellar dynamo and its internal energy transport, may have far reaching impact also for our understanding of low-mass stellar evolution and formation. Emphasis is given in this review to their importance as activity tracers in particular in the light of more and more precise exoplanet detections around solar-like, and therefore likely spotted, host stars. © 2009 Springer-Verlag.

Loading...
Thumbnail Image
Item

Experiments on the magnetorotational instability in helical magnetic fields

2007, Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Szklarski, J., Hollerbach, R.

The magnetorotational instability (MRI) plays a key role in the formation of stars and black holes, by enabling outward angular momentum transport in accretion discs. The use of combined axial and azimuthal magnetic fields allows the investigation of this effect in liquid metal flows at moderate Reynolds and Hartmann numbers. A variety of experimental results is presented showing evidence for the occurrence of the MRI in a Taylor-Couette flow using the liquid metal alloy GaInSn. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Structure and stability of the magnetic solar tachocline

2007, Rüdiger, G., Kitchatinov, L.L.

Rather weak fossil magnetic fields in the radiative core can produce the solar tachocline if the field is almost horizontal in the tachocline region, i.e. if the field is confined within the core. This particular field geometry is shown to result from a shallow (≲1 Mm) penetration of the meridional flow existing in the convection zone into the radiative core. Two conditions are thus crucial for a magnetic tachocline theory: (i) the presence of meridional flow of a few metres per second at the base of the convection zone, and (ii) a magnetic diffusivity inside the tachocline smaller than 108 cm 2 s-1. Numerical solutions for the confined poloidal fields and the resulting tachocline structures are presented. We find that the tachocline thickness runs as Bp-1/2 with the poloidal field amplitude falling below 5% of the solar radius for Bp > 5 mG. The resulting toroidal field amplitude inside the tachocline of about 100 G does not depend on the Bp. The hydromagnetic stability of the tachocline is only briefly discussed. For the hydrodynamic stability of latitudinal differential rotation we found that the critical 29% of the 2D theory of Watson (1981 Geophys. Astrophys. Fluid Dyn. 16 285) are reduced to only 21% in 3D for marginal modes of about 6 Mm radial scale. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.