Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Editorial: New insights and updates on the molecular epidemiology and antimicrobial resistance of MRSA in humans in the whole-genome sequencing era

2019, Coleman, David C., Shore, Anna C., Goering, Richard V., Monecke, Stefan

[No abstract available]

Loading...
Thumbnail Image
Item

Fusion of MALDI Spectrometric Imaging and Raman Spectroscopic Data for the Analysis of Biological Samples

2018, Ryabchykov, Oleg, Popp, Jürgen, Bocklitz, Thomas W.

Despite of a large number of imaging techniques for the characterization of biological samples, no universal one has been reported yet. In this work, a data fusion approach was investigated for combining Raman spectroscopic data with matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis of biological samples because Raman and MALDI information can be complementary to each other. While MALDI spectrometry yields detailed information regarding the lipid content, Raman spectroscopy provides valuable information about the overall chemical composition of the sample. The combination of Raman spectroscopic and MALDI spectrometric imaging data helps distinguishing different regions within the sample with a higher precision than would be possible by using either technique. We demonstrate that a data weighting step within the data fusion is necessary to reveal additional spectral features. The selected weighting approach was evaluated by examining the proportions of variance within the data explained by the first principal components of a principal component analysis (PCA) and visualizing the PCA results for each data type and combined data. In summary, the presented data fusion approach provides a concrete guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging data for biological analysis.

Loading...
Thumbnail Image
Item

Shared MRSA Strains among Nepalese Rhesus macaques (Macaca mulatta), their Environment and Hospitalized Patients

2019, Roberts, Marilyn C., Joshi, Prabhu Raj, Monecke, Stefan, Ehricht, Ralf, Müller, Elke, Gawlik, Darius, Paudel, Saroj, Acharya, Mahesh, Bhattarai, Sankalpa, Pokharel, Sujana, Tuladhar, Reshma, Chalise, Mukesh K., Kyes, Randall C.

This study looked at 227 saliva samples from Rhesus macaques (Macaca mulatta) and 218 samples from the surrounding environments. From these samples, MRSA isolates were collected from Rhesus saliva samples (n = 13) and environmental samples (n = 19) near temple areas in Kathmandu, Nepal. For comparison, selected MRSA isolates (n = 5) were obtained from patients with wound infections from a Kathmandu hospital. All isolates were characterized using Abbott StaphyType® DNA microarrays. Eighteen isolates (62%) from monkeys (n = 4; 31%) and environmental samples (n = 14; 74%), were CC22-MRSA-IV. Most (n = 16) of them carried both, the PVL locus and toxic shock toxin gene (tst1), an unusual combination which is the same as in previously characterized strain from Nepalese macaques and pigs. The five human isolates also belonged to that strain type. Eight monkey MRSA isolates were CC361-MRSA-IV. One MRSA from a monkey and one from an environmental sample, were CC88-MRSA-V. Other environmental MRSA included one each, CC121-MRSA-VT, and CC772 -MRSA-V. Two were CC779-MRSA-VT, potentially a novel clone. All MRSA carried the blaZ gene. The aacA–aphD, dfrA, and erm (C) genes were very common in isolates from all sources. One macaque MRSA carried the resistance genes aphA3 and sat, neither previously identified in primate MRSA isolates. This current study suggests that humans could be a potential source of the MRSA in the macaques/environment and transmission may be linked to humans feeding the primates and/or living in close proximity to each other.This study looked at 227 saliva samples from Rhesus macaques (Macaca mulatta) and 218 samples from the surrounding environments. From these samples, MRSA isolates were collected from Rhesus saliva samples (n = 13) and environmental samples (n = 19) near temple areas in Kathmandu, Nepal. For comparison, selected MRSA isolates (n = 5) were obtained from patients with wound infections from a Kathmandu hospital. All isolates were characterized using Abbott StaphyType® DNA microarrays. Eighteen isolates (62%) from monkeys (n = 4; 31%) and environmental samples (n = 14; 74%), were CC22-MRSA-IV. Most (n = 16) of them carried both, the PVL locus and toxic shock toxin gene (tst1), an unusual combination which is the same as in previously characterized strain from Nepalese macaques and pigs. The five human isolates also belonged to that strain type. Eight monkey MRSA isolates were CC361-MRSA-IV. One MRSA from a monkey and one from an environmental sample, were CC88-MRSA-V. Other environmental MRSA included one each, CC121-MRSA-VT, and CC772 -MRSA-V. Two were CC779-MRSA-VT, potentially a novel clone. All MRSA carried the blaZ gene. The aacA–aphD, dfrA, and erm (C) genes were very common in isolates from all sources. One macaque MRSA carried the resistance genes aphA3 and sat, neither previously identified in primate MRSA isolates. This current study suggests that humans could be a potential source of the MRSA in the macaques/environment and transmission may be linked to humans feeding the primates and/or living in close proximity to each other.

Loading...
Thumbnail Image
Item

More Favorable Palmitic Acid Over Palmitoleic Acid Modification of Wnt3 Ensures Its Localization and Activity in Plasma Membrane Domains

2019, Azbazdar, Yagmur, Ozalp, Ozgun, Sezgin, Erdinc, Veerapathiran, Sapthaswaran, Duncan, Anna L., Sansom, Mark S.P., Eggeling, Christian, Wohland, Thorsten, Karaca, Ezgi, Ozhan, Gunes

While the lateral organization of plasma membrane components has been shown to control binding of Wnt ligands to their receptors preferentially in the ordered membrane domains, the role of posttranslational lipid modification of Wnt on this selective binding is unknown. Here, we identify that the canonical Wnt is presumably acylated by palmitic acid, a saturated 16-carbon fatty acid, at a conserved serine residue. Acylation of Wnt3 is dispensable for its secretion and binding to Fz8 while it is essential for Wnt3's proper binding and domain-like diffusion in the ordered membrane domains. We further unravel that non-palmitoylated Wnt3 is unable to activate Wnt/β-catenin signaling either in zebrafish embryos or in mammalian cells. Based on these results, we propose that the lipidation of canonical Wnt, presumably by a saturated fatty acid, determines its competence in interacting with the receptors in the appropriate domains of the plasma membrane, ultimately keeping the signaling activity under control. © Copyright © 2019 Azbazdar, Ozalp, Sezgin, Veerapathiran, Duncan, Sansom, Eggeling, Wohland, Karaca and Ozhan.

Loading...
Thumbnail Image
Item

Fluoride-Sulfophosphate/Silica Hybrid Fiber as a Platform for Optically Active Materials

2019, Wang, Wei-Chao, Yang, Xu, Wieduwilt, Torsten, Schmidt, Markus A., Zhang, Qin-Yuan, Wondraczek, Lothar

Pressure-assisted melt filling (PAMF) of pre-fabricated micro-capillaries has been proven an effective way of fabricating hybrid optical fiber (HOF) from unusual combinations of materials. Here, we extend the applicability of PAMF to multi-anionic fluoride-sulfophosphate (FPS) glasses. FPS glasses provide extended transmission windows and high solubility for various transition metal (TM) and rare earth (RE) ion species. Using PAMF for fabricating FPS/silica HOFs can therefore act as a platform for a broad variety of optically active fiber devices. For the present demonstration purposes, we selected Cr3+- and Mn2+-doped FPS. For both glasses, we demonstrate how the spectral characteristics of the bulk material persist also in the HOF. Using a double-core fiber structure in which waveguiding is conducted in a primary GeO2-SiO2 core, mode coupling to the secondary FPS-filled core allows one to exploit the optical activity of the doped FPS glass even when the intrinsic optical loss is high.Pressure-assisted melt filling (PAMF) of pre-fabricated micro-capillaries has been proven an effective way of fabricating hybrid optical fiber (HOF) from unusual combinations of materials. Here, we extend the applicability of PAMF to multi-anionic fluoride-sulfophosphate (FPS) glasses. FPS glasses provide extended transmission windows and high solubility for various transition metal (TM) and rare earth (RE) ion species. Using PAMF for fabricating FPS/silica HOFs can therefore act as a platform for a broad variety of optically active fiber devices. For the present demonstration purposes, we selected Cr3+- and Mn2+-doped FPS. For both glasses, we demonstrate how the spectral characteristics of the bulk material persist also in the HOF. Using a double-core fiber structure in which waveguiding is conducted in a primary GeO2-SiO2 core, mode coupling to the secondary FPS-filled core allows one to exploit the optical activity of the doped FPS glass even when the intrinsic optical loss is high.

Loading...
Thumbnail Image
Item

Molecular Analysis of Two Different MRSA Clones ST188 and ST3268 From Primates (Macaca spp.) in a United States Primate Center

2018, Roberts, Marilyn C., Feßler, Andrea T., Monecke, Stefan, Ehricht, Ralf, No, David, Schwarz, Stefan

Methicillin-resistant Staphylococcus aureus (MRSA) were identified in macaques, their environmental facility, and nasal cultures of personnel from the Washington National Primate Research Center [WaNPRC] and included MRSA ST188 SCCmec IV and MRSA ST3268 SCCmec V. The aim of the current study was to determine the carriage of virulence genes, antibiotic resistance genes, and other characteristics of the primate MRSA isolates to determine if there were any obvious differences that would account for differences in transmission within the WaNPRC facility. In total, 1,199 samples from primates were tested for the presence of MRSA resulting in 158 MRSA-positive samples. Fifteen ST188 isolates (all from Macaca nemestrina) and nine ST3268 (four from Macaca mulatta, two from Macaca fascicularis, three from M. nemestrina), were selected for further characterization. All but one of the 15 ST188 isolates had spa type t189 and the remaining one had spa type t3887. These isolates were resistant to β-lactams [blaZ, mecA], macrolides/lincosamides [erm(B)], aminoglycosides [aacA-aphD], and fluoroquinolones. Five isolates were additionally resistant to tetracyclines [tet(K)] and had elevated MICs for benzalkonium chloride [qacC]. In comparison, the nine ST3268 isolates had the related spa types t15469 (n = 5) and t13638 (n = 4). All nine ST3268 isolates were resistant to β-lactams [blaZ, mecA], and tetracyclines [tet(K)]. Some isolates were additionally resistant to aminoglycosides [aacA-aphD], fluoroquinolones and/or showed elevated MICs for benzalkonium chloride [qacC]. In contrast to the ST188 isolates, the ST3268 isolates had the enterotoxin gene cluster egc [seg, sei, selm, seln, selo, selu] and enterotoxin genes sec and sel. The two clones have differences regarding their spa types, virulence and antibiotic resistance genes as well as ST and SCCmec types. However, the data presented does not provide insight into why ST188 spreads easily while ST3268 did not spread within the WaNPRC in-house primates.Methicillin-resistant Staphylococcus aureus (MRSA) were identified in macaques, their environmental facility, and nasal cultures of personnel from the Washington National Primate Research Center [WaNPRC] and included MRSA ST188 SCCmec IV and MRSA ST3268 SCCmec V. The aim of the current study was to determine the carriage of virulence genes, antibiotic resistance genes, and other characteristics of the primate MRSA isolates to determine if there were any obvious differences that would account for differences in transmission within the WaNPRC facility. In total, 1,199 samples from primates were tested for the presence of MRSA resulting in 158 MRSA-positive samples. Fifteen ST188 isolates (all from Macaca nemestrina) and nine ST3268 (four from Macaca mulatta, two from Macaca fascicularis, three from M. nemestrina), were selected for further characterization. All but one of the 15 ST188 isolates had spa type t189 and the remaining one had spa type t3887. These isolates were resistant to β-lactams [blaZ, mecA], macrolides/lincosamides [erm(B)], aminoglycosides [aacA-aphD], and fluoroquinolones. Five isolates were additionally resistant to tetracyclines [tet(K)] and had elevated MICs for benzalkonium chloride [qacC]. In comparison, the nine ST3268 isolates had the related spa types t15469 (n = 5) and t13638 (n = 4). All nine ST3268 isolates were resistant to β-lactams [blaZ, mecA], and tetracyclines [tet(K)]. Some isolates were additionally resistant to aminoglycosides [aacA-aphD], fluoroquinolones and/or showed elevated MICs for benzalkonium chloride [qacC]. In contrast to the ST188 isolates, the ST3268 isolates had the enterotoxin gene cluster egc [seg, sei, selm, seln, selo, selu] and enterotoxin genes sec and sel. The two clones have differences regarding their spa types, virulence and antibiotic resistance genes as well as ST and SCCmec types. However, the data presented does not provide insight into why ST188 spreads easily while ST3268 did not spread within the WaNPRC in-house primates.