Search Results

Now showing 1 - 10 of 16
  • Item
    Enhanced laccase-mediated transformation of diclofenac and flufenamic acid in the presence of bisphenol A and testing of an enzymatic membrane reactor
    (Heidelberg : Springer, 2018-02-24) Hahn, Veronika; Meister, Mareike; Hussy, Stephan; Cordes, Arno; Enderle, GĂ¼nther; Saningong, Akuma; Schauer, Frieder
    The inadequate removal of pharmaceuticals and other micropollutants in municipal wastewater treatment plants, as evidenced by their detection of these substances in the aquatic environment has led to the need for sustainable remediation strategies. Laccases possess a number of advantages including a broad substrate spectrum. To identify promoting or inhibitory effects of reaction partners in the remediation processes we tested not only single compounds-as has been described in most studies-but also mixtures of pollutants. The reaction of diclofenac (DCF) and flufenamic acid (FA), mediated by Trametes versicolor laccase resulted in the formation of products, which were more hydrophilic than the respective reactant (reactant concentration of 0.1 mM; laccase activity 0.5 U/ml). Analyses (HPLC, LC/MS) showed that the product 1a and 1b for DCF and FA, respectively, to be a para-benzoquinone imine derivative. The formation of 1a was enhanced by the addition of bisphenol A (BPA). After 6 days 97% more product was formed in the mixture of DCF and BPA compared with DCF tested alone. Product 1a was also detected in experiments with micropollutant-supplemented secondary effluent. Within 24 h 67% and 100% of DCF and BPA were transformed, respectively (25 U/ml). Experiments with a membrane reactor (volume 10 l; phosphate buffer, pH 7) were in good agreement with the results of the laboratory scale experiments (50 ml). EC50-values were also determined. The data support the use of laccases for the removal or detoxification of recalcitrant pollutants. Thus, the enzyme laccase may be a component of an additional environmentally friendly process for the treatment stage of wastewater remediation.
  • Item
    Climate Feedback on Aerosol Emission and Atmospheric Concentrations
    (Heidelberg : Springer, 2018) Tegen, Ina; Schepanski, Kerstin
    Purpose of Review: Climate factors may considerably impact on natural aerosol emissions and atmospheric distributions. The interdependencies of processes within the aerosol-climate system may thus cause climate feedbacks that need to be understood. Recent findings on various major climate impacts on aerosol distributions are summarized in this review. Recent Findings: While generally atmospheric aerosol distributions are influenced by changes in precipitation, atmospheric mixing, and ventilation due to circulation changes, emissions from natural aerosol sources strongly depend on climate factors like wind speed, temperature, and vegetation. Aerosol sources affected by climate are desert sources of mineral dust, marine aerosol sources, and vegetation sources of biomass burning aerosol and biogenic volatile organic gases that are precursors for secondary aerosol formation. Different climate impacts on aerosol distributions may offset each other. Summary: In regions where anthropogenic aerosol loads decrease, the impacts of climate on natural aerosol variabilities will increase. Detailed knowledge of processes controlling aerosol concentrations is required for credible future projections of aerosol distributions.
  • Item
    Dynamics of droplet formation at T-shaped nozzles with elastic feed lines
    (Heidelberg : Springer, 2010) Malsch, D.; Gleichmann, N.; Kielpinski, M.; Mayer, G.; Henkel, T.; Mueller, D.; Van Steijn, V.; Kleijn, C.R.; Kreutzer, M.T.
    We describe the formation of water in oil droplets, which are commonly used in lab-on-a-chip systems for sample generation and dosing, at microfluidic T-shaped nozzles from elastic feed lines. A narrow nozzle forms a barrier for a liquid-liquid interface, such that pressure can build up behind the nozzle up to a critical pressure. Above this critical pressure, the liquid bursts into the main channel. Build-up of pressure is possible when the fluid before the nozzle is compressible or when the channel that leads to the nozzle is elastic. We explore the value of the critical pressure and the time required to achieve it. We describe the fluid flow of the sudden burst, globally in terms of flow rate into the channel and spatially resolved in terms of flow fields measured using micro-PIV. A total of three different stages-the lag phase, a spill out phase, and a linear growth phase-can be clearly discriminated during droplet formation. The lag time linearly scales with the curvature of the interface inside the nozzle and is inversly proportional to the flow rate of the dispersed phase. A complete overview of the evolution of the growth of droplets and the internal flow structure is provided in the digital supplement. © The Author(s) 2009.
  • Item
    German claims data analysis to assess impact of different intraocular lenses on posterior capsule opacification and related healthcare costs
    (Heidelberg : Springer, 2017) Kossack, Nils; Schindler, Christian; Weinhold, Ines; Hickstein, Lennart; Lehne, Moritz; Walker, Jochen; Neubauer, Aljoscha S.; Häckl, Dennis
    Aim: Cataract extraction is one of the most frequent surgeries in Germany. In most cases, the clouded natural lens is replaced by a hydrophobic or hydrophilic acrylic intraocular lens (IOL) implant. The most common long-term complication after cataract surgery is the development of a posterior capsule opacification (PCO). Although no precise real world data are available, published evidence suggests a lower risk for PCO development for hydrophobic acrylic IOLs compared to hydrophilic acrylic IOLs. Therefore, in the present study we assessed real world data on the impact of different IOL material types on the incidence of post-operative PCO treatment. Subject and methods: In this retrospective study, we included 3,025 patients who underwent cataract extraction and implantation of either an acrylic hydrophobic or hydrophilic IOL in 2010. We assessed clinical outcomes and direct costs in a 4-year follow-up period after cataract surgery from a statutory health insurance (SHI) perspective in Germany. Results: PCO that required capsulotomies occurred significantly (p < 0.0001) less frequent in patients who had received a hydrophobic IOL (31.57% of 2,078 patients) compared to the group with hydrophilic IOL implants (56.6% of 947 patients) and costs per patient for postoperative treatment in a 4-year follow-up were 50.03 € vs. 87.81 € (i.e. 75% higher in the latter group, p < 0.0001). Conclusion: Considering the high prevalence of cataract, the economic burden associated with adverse effects of cataract extraction is of great relevance for the German SHI. Hydrophobic lenses seem to be superior regarding both medical and economic results.
  • Item
    Challenges in network science: Applications to infrastructures, climate, social systems and economics
    (Heidelberg : Springer, 2012) Havlin, S.; Kenett, D.Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J.W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.
    Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.
  • Item
    Pyrimidinone: Versatile Trojan horse in DNA photodamage?
    (Heidelberg : Springer, 2015) Micheel, Mathias; Torres Ziegenbein, Christian; Gilch, Peter; Ryseck, Gerald
    (6-4) Photolesions between adjacent pyrimidine DNA bases are prone to secondary photochemistry. It has been shown that singlet excited (6-4) moieties form Dewar valence isomers as well as triplet excitations. We here report on the triplet state of a minimal model for the (6-4) photolesion, 1-methyl-2(1H)-pyrimidinone. Emphasis is laid on its ability to abstract hydrogen atoms from alcohols and carbohydrates. Steady-state and time-resolved experiments consistently yield bimolecular rate constants of ∼104 M−1 s−1 for the hydrogen abstraction. The process also occurs intramolecularly as experiments on zebularine (1-(β-D-ribofuranosyl)-2(1H)-pyrimidinone) show.
  • Item
    Micro-structured fiber interferometer as sensitive temperature sensor
    (Heidelberg : Springer, 2013) Favero, F.C.; Becker, M.; Spittel, R.; Rothhardt, M.; Kobelke, J.; Bartelt, H.
    We report on a fast and sensitive temperature sensor using a micro-structured or photonic crystal fiber interferometer with a high germanium doped fiber core. The wavelength sensitivity for temperature variation was as high as δλ/δT= 78 pm/ C up to 500 C, which was 6 times more sensitive than the fiber Bragg grating temperature sensitivity of δλ/δT= 13 pm/ C at 1550 nm. The sensor device was investigated concerning the sensitivity characteristics and response time.
  • Item
    Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers
    (Heidelberg : Springer, 2012) Bierlich, J.; Kobelke, J.; Brand, D.; Kirsch, K.; Dellith, J.; Bartelt, H.
    Silica-based fiber tips are used in a variety of spectroscopic, micro- or nano-scopic optical sensor applications and photonic micro-devices. The miniaturization of optical sensor systems and the technical implementation using optical fibers can provide new sensor designs with improved properties and functionality for new applications. The selective-etching of specifically doped silica fibers is a promising method in order to form complex photonic micro structures at the end or within fibers such as tips and cavities in various shapes useful for the all-fiber sensor and imaging applications. In the present study, we investigated the preparation of geometrically predefined, nanoscaled fiber tips by taking advantage of the dopant concentration profiles of highly doped step-index fibers. For this purpose, a gas phase etching process using hydrofluoric acid (HF) vapor was applied. The shaping of the fiber tips was based on very different etching rates as a result of the doping characteristics of specific optical fibers. Technological studies on the influence of the etching gas atmosphere on the temporal tip shaping and the final geometry were performed using undoped and doped silica fibers. The influence of the doping characteristics was investigated in phosphorus-, germanium-, fluorine- and boron-doped glass fibers. Narrow exposed as well as protected internal fiber tips in various shapes and tip radiuses down to less than 15 nm were achieved and characterized geometrically and topologically. For investigations into surface plasmon resonance effects, the fiber tips were coated with nanometer-sized silver layers by means of vapour deposition and finally subjected to an annealing treatment.
  • Item
    Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: Polyester functionalization and characterization
    (Heidelberg : Springer, 2012) Glampedaki, P.; Calvimontes, A.; Dutschk, V.; Warmoeskerken, M.M.C.G.
    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate polyester wettability according to ambient conditions by imparting stimuli-responsiveness from the microgel to the textile itself. Microgels consisted of pH/thermo-responsive microparticles of poly(N-isopropylacrylamide- co-acrylic acid) either alone or complexed with the pH-responsive natural polysaccharide chitosan. Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, ζ-potential measurements, and topographical analysis were used for surface characterization. Wettability of polyester textiles was assessed by dynamic wetting, water vapor transfer, and moisture regain measurements. One of the main findings showed that the polyester surface was rendered pH-responsive, both in acidic and alkaline pH region, owing to the microgel incorporation. With a marked relaxation in their structure and an increase in their microporosity, the functionalized textiles exhibited higher water vapor transfer rates both at 20 and 40 °C, and 65% relative humidity compared with the reference polyester. Also, at 40 °C, i.e., above the microgel Lower Critical Solution Temperature, the functionalized polyester textiles had lower moisture regains than the reference. Finally, the type of the incorporated microgel affected significantly the polyester total absorption times, with an up to 300% increase in one case and an up to 80% decrease in another case. These findings are promising for the development of functional textile materials with possible applications in biotechnology, technical, and protective clothing.
  • Item
    5G transport network requirements for the next generation fronthaul interface
    (Heidelberg : Springer, 2017) Bartelt, J.; Vucic, N.; Camps-Mur, D.; Garcia-Villegas, E.; Demirkol, I.; Fehske, A.; Grieger, M.; Tzanakaki, A.; Gutiérrez, J.; Grass, E.; Lyberopoulos, G.; Fettweis, G.
    To meet the requirements of 5G mobile networks, several radio access technologies, such as millimeter wave communications and massive MIMO, are being proposed. In addition, cloud radio access network (C-RAN) architectures are considered instrumental to fully exploit the capabilities of future 5G RANs. However, RAN centralization imposes stringent requirements on the transport network, which today are addressed with purpose-specific and expensive fronthaul links. As the demands on future access networks rise, so will the challenges in the fronthaul and backhaul segments. It is hence of fundamental importance to consider the design of transport networks alongside the definition of future access technologies to avoid the transport becoming a bottleneck. Therefore, we analyze in this work the impact that future RAN technologies will have on the transport network and on the design of the next generation fronthaul interface. To understand the especially important impact of varying user traffic, we utilize measurements from a real-world 4G network and, taking target 5G performance figures into account, extrapolate its statistics to a 5G scenario. With this, we derive both per-cell and aggregated data rate requirements for 5G transport networks. In addition, we show that the effect of statistical multiplexing is an important factor to reduce transport network capacity requirements and costs. Based on our investigations, we provide guidelines for the development of the 5G transport network architecture.