Search Results

Now showing 1 - 9 of 9
  • Item
    Quantification of osseointegration of plasma-polymer coated titanium alloyed implants by means of microcomputed tomography versus histomorphometry
    (New York [u.a.] : Hindawi, 2015) Gabler, Carolin; Zietz, Carmen; Bieck, Richard; Göhler, Rebecca; Lindner, Tobias; Haenle, Maximilian; Finke, Birgit; Meichsner, Jürgen; Testrich, Holger; Nowottnick, Mathias; Frerich, Bernhard; Bader, Rainer
    A common method to derive both qualitative and quantitative data to evaluate osseointegration of implants is histomorphometry. The present study describes a new image reconstruction algorithm comparing the results of bone-to-implant contact (BIC) evaluated by means of µCT with histomorphometry data. Custom-made conical titanium alloyed (Ti6Al4V) implants were inserted in the distal tibial bone of female Sprague-Dawley rats. Different surface configurations were examined: Ti6Al4V implants with plasma-polymerized allylamine (PPAAm) coating and plasma-polymerized ethylenediamine (PPEDA) coating as well as implants without surface coating. After six weeks postoperatively, tibiae were explanted and BIC was determined by µCT (3D) and afterwards by histomorphometry (2D). In comparison to uncoated Ti6Al4V implants demonstrating low BIC of 32.4% (histomorphometry) and 51.3% (µCT), PPAAm and PPEDA coated implants showed a nonsignificant increase in BIC (histomorphometry: 45.7% and 53.5% and µCT: 51.8% and 62.0%, resp.). Mean BIC calculated by µCT was higher for all surface configurations compared to BIC detected by histomorphometry. Overall, a high correlation coefficient of 0.70 () was found between 3D and 2D quantification of BIC. The μCT analysis seems to be suitable as a nondestructive and accurate 3D imaging method for the evaluation of the bone-implant interface.
  • Item
    Orchestrated control of filaggrin-actin scaffolds underpins cornification
    (London [u.a.] : Nature Publishing Group, 2018) Gutowska-Owsiak, Danuta; de La Serna, Jorge Bernardino; Fritzsche, Marco; Naeem, Aishath; Podobas, Ewa I.; Leeming, Michael; Colin-York, Huw; O’Shaughnessy, Ryan; Eggeling, Christian; Ogg, Graham S.
    Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and β-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.
  • Item
    Bioactive secondary metabolites with multiple activities from a fungal endophyte
    (Oxford : Wiley-Blackwell, 2016) Bogner, Catherine W.; Kamdem, Ramsay S.T.; Sichtermann, Gisela; Matthäus, Christian; Hölscher, Dirk; Popp, Jürgen; Proksch, Peter; Grundler, Florian M.W.; Schouten, Alexander
    In order to replace particularly biohazardous nematocides, there is a strong drive to finding natural product-based alternatives with the aim of containing nematode pests in agriculture. The metabolites produced by the fungal endophyte Fusarium oxysporum 162 when cultivated on rice media were isolated and their structures elucidated. Eleven compounds were obtained, of which six were isolated from a Fusarium spp. for the first time. The three most potent nematode-antagonistic compounds, 4-hydroxybenzoic acid, indole-3-acetic acid (IAA) and gibepyrone D had LC50 values of 104, 117 and 134 μg ml−1, respectively, after 72 h. IAA is a well-known phytohormone that plays a role in triggering plant resistance, thus suggesting a dual activity, either directly, by killing or compromising nematodes, or indirectly, by inducing defence mechanisms against pathogens (nematodes) in plants. Such compounds may serve as important leads in the development of novel, environmental friendly, nematocides.
  • Item
    Charge isomers of myelin basic protein: Structure and interactions with membranes, nucleotide analogues, and calmodulin
    (San Francisco, CA : Public Library of Science, 2011) Wang, C.; Neugebauer, U.; Bürck, J.; Myllykoski, M.; Baumgärtel, P.; Popp, J.; Kursula, P.
    As an essential structural protein required for tight compaction of the central nervous system myelin sheath, myelin basic protein (MBP) is one of the candidate autoantigens of the human inflammatory demyelinating disease multiple sclerosis, which is characterized by the active degradation of the myelin sheath. In this work, recombinant murine analogues of the natural C1 and C8 charge components (rmC1 and rmC8), two isoforms of the classic 18.5-kDa MBP, were used as model proteins to get insights into the structure and function of the charge isomers. Various biochemical and biophysical methods such as size exclusion chromatography, calorimetry, surface plasmon resonance, small angle X-ray and neutron scattering, Raman and fluorescence spectroscopy, and conventional as well as synchrotron radiation circular dichroism were used to investigate differences between these two isoforms, both from the structural point of view, and regarding interactions with ligands, including calmodulin (CaM), various detergents, nucleotide analogues, and lipids. Overall, our results provide further proof that rmC8 is deficient both in structure and especially in function, when compared to rmC1. While the CaM binding properties of the two forms are very similar, their interactions with membrane mimics are different. CaM can be used to remove MBP from immobilized lipid monolayers made of synthetic lipids - a phenomenon, which may be of relevance for MBP function and its regulation. Furthermore, using fluorescently labelled nucleotides, we observed binding of ATP and GTP, but not AMP, by MBP; the binding of nucleoside triphosphates was inhibited by the presence of CaM. Together, our results provide important further data on the interactions between MBP and its ligands, and on the differences in the structure and function between MBP charge isomers.
  • Item
    Smart skin patterns protect springtails
    (San Francisco, CA : Public Library of Science, 2011) Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C.
    Springtails, arthropods who live in soil, in decaying material, and on plants, have adapted to demanding conditions by evolving extremely effective and robust anti-adhesive skin patterns. However, details of these unique properties and their structural basis are still unknown. Here we demonstrate that collembolan skin can resist wetting by many organic liquids and at elevated pressures. We show that the combination of bristles and a comb-like hexagonal or rhombic mesh of interconnected nanoscopic granules distinguish the skin of springtails from anti-adhesive plant surfaces. Furthermore, the negative overhang in the profile of the ridges and granules were revealed to be a highly effective, but as yet neglected, design principle of collembolan skin. We suggest an explanation for the non-wetting characteristics of surfaces consisting of such profiles irrespective of the chemical composition. Many valuable opportunities arise from the translation of the described comb-like patterns and overhanging profiles of collembolan skin into man-made surfaces that combine stability against wear and friction with superior non-wetting and anti-adhesive characteristics.
  • Item
    Persistent effectivity of gas plasma-treated, long time-stored liquid on epithelial cell adhesion capacity and membrane morphology
    (San Francisco, CA : Public Library of Science, 2014) Hoentsch, M.; Bussiahn, R.; Rebl, H.; Bergemann, C.; Eggert, M.; Frank, M.; Von Woedtke, T.; Nebe, B.
    Research in plasma medicine includes a major interest in understanding gas plasma-cell interactions. The immediate application of gas plasma in vitro inhibits cell attachment, vitality and cell-cell contacts via the liquid. Interestingly, in our novel experiments described here we found that the liquid-mediated plasma effect is long-lasting after storage up to seven days; i. e. the liquid preserves the characteristics once induced by the argon plasma. Therefore, the complete Dulbecco's Modified Eagle cell culture medium was argon plasma-treated (atmospheric pressure, kINPen09) for 60 s, stored for several days (1, 4 and 7 d) at 37°C and added to a confluent mouse hepatocyte epithelial cell (mHepR1) monolayer. Impaired tight junction architecture as well as shortened microvilli on the cell membrane could be observed, which was accompanied by the loss of cell adhesion capacity. Online-monitoring of vital cells revealed a reduced cell respiration. Our first timedependent analysis of plasma-treated medium revealed that temperature, hydrogen peroxide production, pH and oxygen content can be excluded as initiators of cell physiological and morphological changes. The here observed persisting biological effects in plasma-treated liquids could open new medical applications in dentistry and orthopaedics.
  • Item
    Cellular responses to beating hydrogels to investigate mechanotransduction
    ([London] : Nature Publishing Group UK, 2019) Chandorkar, Yashoda; Castro Nava, Arturo; Schweizerhof, Sjören; Van Dongen, Marcel; Haraszti, Tamás; Köhler, Jens; Zhang, Hang; Windoffer, Reinhard; Mourran, Ahmed; Möller, Martin; De Laporte, Laura
    Cells feel the forces exerted on them by the surrounding extracellular matrix (ECM) environment and respond to them. While many cell fate processes are dictated by these forces, which are highly synchronized in space and time, abnormal force transduction is implicated in the progression of many diseases (muscular dystrophy, cancer). However, material platforms that enable transient, cyclic forces in vitro to recreate an in vivo-like scenario remain a challenge. Here, we report a hydrogel system that rapidly beats (actuates) with spatio-temporal control using a near infra-red light trigger. Small, user-defined mechanical forces (~nN) are exerted on cells growing on the hydrogel surface at frequencies up to 10 Hz, revealing insights into the effect of actuation on cell migration and the kinetics of reversible nuclear translocation of the mechanosensor protein myocardin related transcription factor A, depending on the actuation amplitude, duration and frequency.
  • Item
    Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation
    (Washington, DC [u.a.] : Assoc., 2019) Huo, Shuaidong; Gong, Ningqiang; Jiang, Ying; Chen, Fei; Guo, Hongbo; Gan, Yaling; Wang, Zhisen; Herrmann, Andreas; Liang, Xing-Jie
    The development of an efficient delivery system for enhanced and controlled gene interference–based therapeutics is still facing great challenges. Fortunately, the flourishing field of nanotechnology provides more effective strategies for nucleic acid delivery. Here, the triplex-forming oligonucleotide sequence and its complementary strand were used to mediate self-assembly of ultrasmall gold nanoparticles. The obtained sunflower-like nanostructures exhibited strong near-infrared (NIR) absorption and photothermal conversion ability. Upon NIR irradiation, the large-sized nanostructure could disassemble and generate ultrasmall nanoparticles modified with c-myc oncogene silencing sequence, which could directly target the cell nucleus. Moreover, the controlled gene silencing effect could be realized by synergistically controlling the preincubation time with the self-assembled nanostructure (in vitro and in vivo) and NIR irradiation time point. This study provides a new approach for constructing more efficient and tailorable nanocarriers for gene interference applications
  • Item
    Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta
    (London : Nature Publishing Group, 2013) Ehrlich, H.; Rigby, J.K.; Botting, J.P.; Tsurkan, M.V.; Werner, C.; Schwille, P.; Petrášek, Z.; Pisera, A.; Simon, P.; Sivkov, V.N.; Vyalikh, D.V.; Molodtsov, S.L.; Kurek, D.; Kammer, M.; Hunoldt, S.; Born, R.; Stawski, D.; Steinhof, A.; Bazhenov, V.V.; Geisler, T.
    Sponges are probably the earliest branching animals, and their fossil record dates back to the Precambrian. Identifying their skeletal structure and composition is thus a crucial step in improving our understanding of the early evolution of metazoans. Here, we present the discovery of 505-million-year-old chitin, found in exceptionally well preserved Vauxia gracilenta sponges from the Middle Cambrian Burgess Shale. Our new findings indicate that, given the right fossilization conditions, chitin is stable for much longer than previously suspected. The preservation of chitin in these fossils opens new avenues for research into other ancient fossil groups.