Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Expressing stemflow commensurate with its ecohydrological importance

2018, Carlyle-Moses, Darryl E., Iida, Shin'ichi, Germer, Sonja, Llorens, Pilar, Michalzik, Beate, Nanko, Kazuki, Tischer, Alexander, Levia, Delphis F.

Despite some progress, the importance of stemflow remains obscured partly due to computations emphasizing canopy interception loss. We advocate for two metrics—the stand-scale funneling ratio and the stand-scale infiltration funneling ratio—to more accurately portray stemflow inputs and increase comparability across ecosystems. These metrics yield per unit area stemflow inputs orders of magnitude greater than what would have been delivered by throughfall or precipitation alone. We recommend that future studies employ these stand-scale funnelling metrics to express stemflow commensurate with its ecohydrological importance and better conceptualize the role of stemflow in plant-soil interactions, permitting advances in critical zone science. © 2018 The Authors

Loading...
Thumbnail Image
Item

Dynamics of rural livelihoods and rainfall variability in Northern Ethiopian Highlands

2019, Adamseged, Muluken E., Frija, Aymen, Thiel, Andreas

[No abstract available]

Loading...
Thumbnail Image
Item

Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts

2019, Hempel, Sabrina, Menz, Christoph, Pinto, Severino, Galán, Elena, Janke, David, Estellés, Fernando, Müschner-Siemens, Theresa, Wang, Xiaoshuai, Heinicke, Julia, Zhang, Guoqiang, Amon, Barbara, del Prado, Agustín, Amon, Thomas

In the last decades, a global warming trend was observed. Along with the temperature increase, modifications in the humidity and wind regime amplify the regional and local impacts on livestock husbandry. Direct impacts include the occurrence of climatic stress conditions. In Europe, cows are economically highly relevant and are mainly kept in naturally ventilated buildings that are most susceptible to climate change. The high-yielding cows are particularly vulnerable to heat stress. Modifications in housing management are the main measures taken to improve the ability of livestock to cope with these conditions. Measures are typically taken in direct reaction to uncomfortable conditions instead of in anticipation of a long-term risk for climatic stress. Measures that balance welfare, environmental and economic issues are barely investigated in the context of climate change and are thus almost not available for commercial farms. Quantitative analysis of the climate change impacts on animal welfare and linked economic and environmental factors is rare. Therefore, we used a numerical modeling approach to estimate the future heat stress risk in such dairy cattle husbandry systems. The indoor climate was monitored inside three reference barns in central Europe and the Mediterranean regions. An artificial neuronal network (ANN) was trained to relate the outdoor weather conditions provided by official meteorological weather stations to the measured indoor microclimate. Subsequently, this ANN model was driven by an ensemble of regional climate model projections with three different greenhouse gas concentration scenarios. For the evaluation of the heat stress risk, we considered the number and duration of heat stress events. Based on the changes in the heat stress events, various economic and environmental impacts were estimated. The impacts of the projected increase in heat stress risk varied among the barns due to different locations and designs as well as the anticipated climate change (considering different climate models and future greenhouse gas concentrations). There was an overall increasing trend in number and duration of heat stress events. At the end of the century, the number of annual stress events can be expected to increase by up to 2000, while the average duration of the events increases by up to 22 h compared to the end of the last century. This implies strong impacts on economics, environment and animal welfare and an urgent need for mid-term adaptation strategies. We anticipated that up to one-tenth of all hours of a year, correspondingly one-third of all days, will be classified as critical heat stress conditions. Due to heat stress, milk yield may decrease by about 2.8 % relative to the present European milk yield, and farmers may expect financial losses in the summer season of about 5.4 % of their monthly income. In addition, an increasing demand for emission reduction measures must be expected, as an emission increase of about 16 Gg of ammonia and 0.1 Gg of methane per year can be expected under the anticipated heat stress conditions. The cattle respiration rate increases by up to 60 %, and the standing time may be prolonged by 1 h. This causes health issues and increases the probability of medical treatments. The various impacts imply feedback loops in the climate system which are presently underexplored. Hence, future in-depth studies on the different impacts and adaptation options at different stress levels are highly recommended.

Loading...
Thumbnail Image
Item

Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6

2018, Rolinski, S., Müller, C., Heinke, J., Weindl, I., Biewald, A., Leon Bodirsky, B., Bondeau, A., Boons-Prins, E.R., Bouwman, A.F., Leffelaar, P.A., Roller, J.A.T., Schaphoff, S., Thonicke, K.

Grassland management affects the carbon fluxes of one-third of the global land area and is thus an important factor for the global carbon budget. Nonetheless, this aspect has been largely neglected or underrepresented in global carbon cycle models. We investigate four harvesting schemes for the managed grassland implementation of the dynamic global vegetation model (DGVM) Lund-Potsdam-Jena managed Land (LPJmL) that facilitate a better representation of actual management systems globally. We describe the model implementation and analyze simulation results with respect to harvest, net primary productivity and soil carbon content and by evaluating them against reported grass yields in Europe.We demonstrate the importance of accounting for differences in grassland management by assessing potential livestock grazing densities as well as the impacts of grazing, grazing intensities and mowing systems on soil carbon stocks. Grazing leads to soil carbon losses in polar or arid regions even at moderate livestock densities ( <0.4 livestock units per hectare-LSUha-1) but not in temperate regions even at much higher densities (0.4 to 1.2 LSUha-1). Applying LPJmL with the new grassland management options enables assessments of the global grassland production and its impact on the terrestrial biogeochemical cycles but requires a global data set on current grassland management.

Loading...
Thumbnail Image
Item

Land-use futures in the shared socio-economic pathways

2017, Popp, Alexander, Calvin, Katherine, Fujimori, Shinichiro, Havlik, Petr, Humpenöder, Florian, Stehfest, Elke, Bodirsky, Benjamin Leon, Dietrich, Jan Philipp, Doelmann, Jonathan C., Gusti, Mykola, Hasegawa, Tomoko, Kyle, Page, Obersteiner, Michael, Tabeau, Andrzej, Takahashi, Kiyoshi, Valin, Hugo, Waldhoff, Stephanie, Weindl, Isabelle, Wise, Marshall, Kriegler, Elmar, Lotze-Campen, Hermann, Fricko, Oliver, Riahi, Keywan, Vuuren, Detlef P. van

In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis. © 2016 The Authors