Search Results

Now showing 1 - 10 of 22
Loading...
Thumbnail Image
Item

Nitrous oxide emissions from winter oilseed rape cultivation

2017, Ruser, Reiner, Fuß, Roland, Andres, Monique, Hegewald, Hannes, Kesenheimer, Katharina, Köbke, Sarah, Räbiger, Thomas, Quinones, Teresa Suarez, Augustin, Jürgen, Christen, Olaf, Dittert, Klaus, Kage, Henning, Lewandowski, Iris, Prochnow, Annette, Stichnothe, Heinz, Flessa, Heinz

Winter oilseed rape (Brassica napus L., WOSR) is the major oil crop cultivated in Europe. Rapeseed oil is predominantly used for production of biodiesel. The framework of the European Renewable Energy Directive requires that use of biofuels achieves GHG savings of at least 50% compared to use of fossil fuel starting in 2018. However, N2O field emissions are estimated using emission factors that are not specific for the crop and associated with strong uncertainty. N2O field emissions are controlled by N fertilization and dominate the GHG balance of WOSR cropping due to the high global warming potential of N2O. Thus, field experiments were conducted to increase the data basis and subsequently derive a new WOSR-specific emission factor. N2O emissions and crop yields were monitored for three years over a range of N fertilization intensities at five study sites representative of German WOSR production. N2O fluxes exhibited the typical high spatial and temporal variability in dependence on soil texture, weather and nitrogen availability. The annual N2O emissions ranged between 0.24 kg and 5.48 kg N2O-N ha−1 a−1. N fertilization increased N2O emissions, particularly with the highest N treatment (240 kg N ha−1). Oil yield increased up to a fertilizer amount of 120 kg N ha−1, higher N-doses increased grain yield but decreased oil concentrations in the seeds. Consequently oil yield remained constant at higher N fertilization. Since, yield-related emission also increased exponentially with N surpluses, there is potential for reduction of the N fertilizer rate, which offers perspectives for the mitigation of GHG emissions. Our measurements double the published data basis of annual N2O flux measurements in WOSR. Based on this extended dataset we modeled the relationship between N2O emissions and fertilizer N input using an exponential model. The corresponding new N2O emission factor was 0.6% of applied fertilizer N for a common N fertilizer amount under best management practice in WOSR production (200 kg N ha−1 a−1). This factor is substantially lower than the linear IPCC Tier 1 factor (EF1) of 1.0% and other models that have been proposed. © 2017

Loading...
Thumbnail Image
Item

Milk fatty acids estimated by mid-infrared spectroscopy and milk yield can predict methane emissions in dairy cows

2018-5-2, Engelke, Stefanie W., Daş, Gürbüz, Derno, Michael, Tuchscherer, Armin, Berg, Werner, Kuhla, Björn, Metges, Cornelia C.

Ruminant enteric methane emission contributes to global warming. Although breeding low methane-emitting cows appears to be possible through genetic selection, doing so requires methane emission quantification by using elaborate instrumentation (respiration chambers, SF6 technique, GreenFeed) not feasible on a large scale. It has been suggested that milk fatty acids are promising markers of methane production. We hypothesized that methane emission can be predicted from the milk fatty acid concentrations determined by mid-infrared spectroscopy, and the integration of energy-corrected milk yield would improve the prediction. Therefore, we examined relationships between methane emission of cows measured in respiration chambers and milk fatty acids, predicted by mid-infrared spectroscopy, to derive diet-specific and general prediction equations based on milk fatty acid concentrations alone and with the additional consideration of energy-corrected milk yield. Cows were fed diets differing in forage type and linseed supplementation to generate a large variation in both CH4 emission and milk fatty acids. Depending on the diet, equations derived from regression analysis explained 61 to 96% of variation of methane emission, implying the potential of milk fatty acid data predicted by mid-infrared spectroscopy as novel proxy for direct methane emission measurements. When data from all diets were analyzed collectively, the equation with energy-corrected milk yield (CH4 (L/day) = − 1364 + 9.58 × energy-corrected milk yield + 18.5 × saturated fatty acids + 32.4 × C18:0) showed an improved coefficient of determination of cross-validation R2 CV = 0.72 compared to an equation without energy-corrected milk yield (R2 CV = 0.61). Equations developed for diets supplemented by linseed showed a lower R2 CV as compared to diets without linseed (0.39 to 0.58 vs. 0.50 to 0.91). We demonstrate for the first time that milk fatty acid concentrations predicted by mid-infrared spectroscopy together with energy-corrected milk yield can be used to estimate enteric methane emission in dairy cows. © 2018, The Author(s).

Loading...
Thumbnail Image
Item

Hydrothermal Carbonization and Pyrolysis of Sewage Sludge: Effects on Lolium perenne Germination and Growth

2019, Paneque, Marina, Knicker, Heike, Kern, Jürgen, De la Rosa, José María

The pyrolysis and hydrothermal carbonization (HTC) of sewage sludge (SS) resulted in products free of pathogens, with the potential for being used as soil amendment. With this work, we evaluated the impact of dry pyrolysis-treated (600 °C, 1 h) and HTC-treated (200 °C, 260 °C; 0.5 h, 3 h) SS on the germination, survival, and growth of Lolium perenne during an 80 day greenhouse experiment. Therefore, the hydrochars and pyrochars were amended to a Calcic Cambisol at doses of 5 and 25 t ha−1. The addition of sludge pyrochars to the Cambisol did not affect Lolium germination, survival rates or plant yields. However, the use 25 t ha−1 of wood biochar reduced germination and survival rates, which may be related to the low N availability of this sample. In comparison to the control, higher or equal plant biomass was produced in the hydrochar-amended pots, even though some hydrochars decreased plant germination and survival rates. Among all the evaluated char properties, only the organic and inorganic N contents of the chars, along with their organic C values, positively correlated with total and shoot biomass production. Our work demonstrates the N fertilization potential of the hydrochar produced at low temperature, whereas the hydrochar produced at 260 °C and the pyrochars were less efficient with respect to plant yields.

Loading...
Thumbnail Image
Item

Methane prediction based on individual or groups of milk fatty acids for dairy cows fed rations with or without linseed

2019, Engelke, Stefanie W., Daş, Gürbüz, Derno, Michael, Tuchscherer, Armin, Wimmers, Klaus, Rychlik, Michael, Kienberger, Hermine, Berg, Werner, Kuhla, Björn, Metges, Cornelia C.

Milk fatty acids (MFA) are a proxy for the prediction of CH4 emission from cows, and prediction differs with diet. Our objectives were (1) to compare the effect of diets on the relation between MFA profile and measured CH4 production, (2) to predict CH4 production based on 6 data sets differing in the number and type of MFA, and (3) to test whether additional inclusion of energy-corrected milk (ECM) yield or dry matter intake (DMI) as explanatory variables improves predictions. Twenty dairy cows were used. Four diets were used based on corn silage (CS) or grass silage (GS) without (L0) or with linseed (LS) supplementation. Ten cows were fed CS-L0 and CS-LS and the other 10 cows were fed GS-L0 and GS-LS in random order. In feeding wk 5 of each diet, CH4 production (L/d) was measured in respiration chambers for 48 h and milk was analyzed for MFA concentrations by gas chromatography. Specific CH4 prediction equations were obtained for L0-, LS-, GS-, and CS-based diets and for all 4 diets collectively and validated by an internal cross-validation. Models were developed containing either 43 identified MFA or a reduced set of 7 groups of biochemically related MFA plus C16:0 and C18:0. The CS and LS diets reduced CH4 production compared with GS and L0 diets, respectively. Methane yield (L/kg of DMI) reduction by LS was higher with CS than GS diets. The concentrations of C18:1 trans and n-3 MFA differed among GS and CS diets. The LS diets resulted in a higher proportion of unsaturated MFA at the expense of saturated MFA. When using the data set of 43 individual MFA to predict CH4 production (L/d), the cross-validation coefficient of determination (R2 CV) ranged from 0.47 to 0.92. When using groups of MFA variables, the R2 CV ranged from 0.31 to 0.84. The fit parameters of the latter models were improved by inclusion of ECM or DMI, but not when added to the data set of 43 MFA for all diets pooled. Models based on GS diets always had a lower prediction potential (R2 CV = 0.31 to 0.71) compared with data from CS diets (R2 CV = 0.56 to 0.92). Models based on LS diets produced lower prediction with data sets with reduced MFA variables (R2 CV = 0.62 to 0.68) compared with L0 diets (R2 CV = 0.67 to 0.80). The MFA C18:1 cis-9 and C24:0 and the monounsaturated FA occurred most often in models. In conclusion, models with a reduced number of MFA variables and ECM or DMI are suitable for CH4 prediction, and CH4 prediction equations based on diets containing linseed resulted in lower prediction accuracy. © 2019 American Dairy Science Association

Loading...
Thumbnail Image
Item

Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR

2019, Tsoulias, Nikos, Paraforos, Dimitrios S., Fountas, Spyros, Zude-Sasse, Manuela

Data of canopy morphology are crucial for cultivation tasks within orchards. In this study, a 2D light detection and range (LiDAR) laser scanner system was mounted on a tractor, tested on a box with known dimensions (1.81 m × 0.6 m × 0.6 m), and applied in an apple orchard to obtain the 3D structural parameters of the trees (n = 224). The analysis of a metal box which considered the height of four sides resulted in a mean absolute error (MAE) of 8.18 mm with a bias (MBE) of 2.75 mm, representing a root mean square error (RMSE) of 1.63% due to gaps in the point cloud and increased incident angle with enhanced distance between laser aperture and the object. A methodology based on a bivariate point density histogram is proposed to estimate the stem position of each tree. The cylindrical boundary was projected around the estimated stem positions to segment each individual tree. Subsequently, height, stem diameter, and volume of the segmented tree point clouds were estimated and compared with manual measurements. The estimated stem position of each tree was defined using a real time kinematic global navigation satellite system, (RTK-GNSS) resulting in an MAE and MBE of 33.7 mm and 36.5 mm, respectively. The coefficient of determination (R2) considering manual measurements and estimated data from the segmented point clouds appeared high with, respectively, R2 and RMSE of 0.87 and 5.71% for height, 0.88 and 2.23% for stem diameter, as well as 0.77 and 4.64% for canopy volume. Since a certain error for the height and volume measured manually can be assumed, the LiDAR approach provides an alternative to manual readings with the advantage of getting tree individual data of the entire orchard.

Loading...
Thumbnail Image
Item

Biochar research activities and their relation to development and environmental quality. A meta-analysis

2017-6-6, Mehmood, Khalid, Chávez Garcia, Elizabeth, Schirrmann, Michael, Ladd, Brenton, Kammann, Claudia, Wrage-Mönnig, Nicole, Siebe, Christina, Estavillo, Jose M., Fuertes-Mendizabal, Teresa, Cayuela, Mariluz, Sigua, Gilbert, Spokas, Kurt, Cowie, Annette L., Novak, Jeff, Ippolito, James A., Borchard, Nils

Biochar is the solid product that results from pyrolysis of organic materials. Its addition to highly weathered soils changes physico-chemical soil properties, improves soil functions and enhances crop yields. Highly weathered soils are typical of humid tropics where agricultural productivity is low and needs to be raised to reduce human hunger and poverty. However, impact of biochar research on scientists, politicians and end-users in poor tropical countries remains unknown; assessing needs and interests on biochar is essential to develop reliable knowledge transfer/translation mechanisms. The aim of this publication is to present results of a meta-analysis conducted to (1) survey global biochar research published between 2010 and 2014 to assess its relation to human development and environmental quality, and (2) deduce, based on the results of this analysis, priorities required to assess and promote the role of biochar in the development of adapted and sustainable agronomic methods. Our main findings reveal for the very first time that: (1) biochar research associated with less developed countries focused on biochar production technologies (26.5 ± 0.7%), then on biochars’ impact on chemical soil properties (18.7 ± 1.2%), and on plant productivity (17.1 ± 2.6%); (2) China dominated biochar research activities among the medium developed countries focusing on biochar production technologies (26.8 ± 0.5%) and on use of biochar as sorbent for organic and inorganic compounds (29.1 ± 0.4%); and (3) the majority of biochar research (69.0±2.9%) was associated with highly developed countries that are able to address a higher diversity of questions. Evidently, less developed countries are eager to improve soil fertility and agricultural productivity, which requires transfer and/or translation of biochar knowledge acquired in highly developed countries. Yet, improving local research capacities and encouraging synergies across scientific disciplines and countries are crucial to foster development of sustainable agronomy in less developed countries. © 2017, The Author(s).

Loading...
Thumbnail Image
Item

Rapid determination of lime requirement by mid-infrared spectroscopy: A promising approach for precision agriculture

2019, Leenen, Matthias, Welp, Gerhard, Gebbers, Robin, Pätzold, Stefan

Mid-infrared spectroscopy (MIRS) has proven to be a cost-effective, high throughput measurement technique for soil analysis. After multivariate calibration mid-infrared spectra can be used to predict various soil properties, some of which are related to lime requirement (LR). The objective of this study was to test the performance of MIRS for recommending variable rate liming on typical Central European soils in view of precision agriculture applications. In Germany, LR of arable topsoils is commonly derived from the parameters organic matter content (SOM), clay content, and soil pH (CaCl2) as recommended by the Association of German Agricultural Analytical and Research Institutes (VDLUFA). We analysed a total of 458 samples from six locations across Germany, which all revealed large within-field soil heterogeneity. Calcareous topsoils were observed at some positions of three locations (79 samples). To exclude such samples from LR determination, peak height at 2513 cm−1 of the MIR spectrum was used for identification. Spectra-based identification was accurate for carbonate contents > 0.5%. Subsequent LR derivation (LRSPP) from MIRS-PLSR predictions of SOM, clay, and pH (CaCl2) for non-calcareous soil samples using the VDLUFA look-up tables was successful for all locations (R2 = 0.54–0.82; RMSE = 857–1414 kg CaO ha−1). Alternatively, we tested direct LR prediction (LRDP) by MIRS-PLSR and also achieved satisfactory performance (R2 = 0.52–0.77; RMSE = 811–1420 kg CaO ha−1; RPD = 1.44–2.08). Further improvement was achieved by refining the VDLUFA tables towards a stepless algorithm. It can be concluded that MIRS provides a promising approach for precise LR estimation on heterogeneous arable fields. Large sample numbers can be processed with low effort which is an essential prerequisite for variable rate liming in precision agriculture. © 2019 The Authors. Journal of Plant Nutrition and Soil Science published by WILEY-VCH Verlag GmbH & Co. KGaA

Loading...
Thumbnail Image
Item

An alternative to field retting: Fibrous materials based on wet preserved hemp for the manufacture of composites

2019, Gusovius, H.-J., Lühr, C., Hoffmann, T., Pecenka, R., Idler, C.

A process developed at the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) for the supply and processing of wet-preserved fiber plants opens up new potential uses for such resources. The processing of industrial hemp into fiber materials and products thereof is undergoing experimental research along the value-added chain from the growing process through to the manufacturing of product samples. The process comprises the direct harvesting of the field-fresh hemp and the subsequent anaerobic storage of the entire plant material. Thus, process risk due to unfavorable weather conditions is prevented in contrast to common dew retting procedures. The effects of the anaerobic storage processes on the properties of the bast part of the plant material are comparable to the results of common retting procedures. Harvest storage, as well as further mechanical processing, leads to different geometrical properties compared to the bast fibers resulting from traditional post harvesting treatment and decortication. The fiber raw material obtained in this way is well suited to the production of fiberboards and the reinforcement of polymer or mineral bonded composites. The objective of this paper is to present recent research results on final products extended by a comprehensive overview of the whole supply chain in order to enable further understanding of the result influencing aspects of prior process steps.

Loading...
Thumbnail Image
Item

Effect of densification variables on water resistance of corn cob briquettes

2019, Orisaleye, J.I., Jekayinfa, S.O., Pecenka, R., Onifade, T.B.

Solid biofuels can be used in heat and power generation applications. The utilization of agricultural residues for this purpose would be of immense benefit to rural communities of developing countries where the resource is being produced. Water resistance is a crucial property for transport and storage of biomass briquettes under moist climate conditions. In this study, the effect of process and material variables on the water resistance property of corn cob briquettes was investigated. The water resistance of briquettes produced ranged between 32.6 and 94.8% for die temperature between 90 °C and 120 °C, hold time from 7.5 to 15 minutes and die pressures between 9 and 15 MPa. A higher die temperature resulted in an increase in the water resistance of the biomass briquettes. Also, increasing the hold time improved the water resistance of the briquettes. Using a particle size less than 2.5 mm resulted in higher briquette water resistance property compared to briquettes produced from particle sizes greater than 2.5 mm. It was also shown that the effect of the interaction of the temperature with particle size on the water resistance of corn cob briquettes was statistically significant (p < 0.05). © 2019, Eesti Pollumajandusulikool. All rights reserved.

Loading...
Thumbnail Image
Item

A simple fish-based approach to assess the ecological quality of freshwater reservoirs in Central Europe

2017-11-17, Blabolil, Petr, Říha, Milan, Ricard, Daniel, Peterka, Jiří, Prchalová, Marie, Vašek, Mojmír, Čech, Martin, Frouzová, Jaroslava, Jůza, Tomáš, Muška, Milan, Tušer, Michal, Draštík, Vladislav, Sajdlová, Zuzana, Šmejkal, Marek, Vejřík, Lukáš, Matěna, Josef, Boukal, David S., Ritterbusch, David, Kubečka, Jan

The assessment of ecological quality in freshwater ecosystems is a key issue in many countries, but conditions for the development of assessment methodologies are often country-specific. This study proposes a simple methodology for the assessment of the ecological potential of reservoirs based on fish communities using a dataset covering major environmental and pressure gradients in reservoirs in the Czech Republic. Fish data obtained by gillnet sampling were correlated with a proxy of eutrophication as a key indicator of anthropogenic pressure for selecting appropriate fish-based indicators, establishing scoring criteria and developing the index of ecological quality. Expert judgement was also used to select potential fish indicators. Nine indicators were selected for the final fish-based index, fulfilling the criteria required by the Water Framework Directive. Two steps were used to validate the fish-based index quantification of its inter annual stability and sensitivity analysis of individual indicators. Finally, the index was compared to a previously developed general index for Central and Western Europe. Our study demonstrates that a combination of expert judgement and strict validation methods can result in an informative assessment of the ecological conditions, which can help identify conservation and restoration priorities. © P. Blabolil.