Search Results

Now showing 1 - 10 of 3667
  • Item
    2-hydroxyethylammonium iodide
    (Chester : International Union of Crystallography, 2014) Kohrt, C.; Spannenberg, A.; Werner, T.
    In the crystal structure of the title salt, C2H 8NO+·I-, N-H⋯O, N-H⋯I and O-H⋯I hydrogen bonds lead to the formation of layers staggered along the c axis.
  • Item
    Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate
    (Chester : International Union of Crystallography, 2015) Schirmer, Marie-Luis; Spannenberg, Anke; Werner, Thomas
    The title compound, C17H18O5, was synthesized by a base-free catalytic Wittig reaction. The mol­ecule consists of a diethyl itaconate unit, which is connected via the C=C double bond to a benzo­furan moiety. The benzo­furan ring system (r.m.s. deviation = 0.007 Å) forms dihedral angles of 79.58 (4) and 12.12 (10)° with the mean planes through the cis and trans eth­oxy­carbonyl groups, respectively. An intra­molecular C-H...O hydrogen bond involving the O atom of the benzo­furan moiety is observed. In the crystal, mol­ecules are linked into ribbons running parallel to the b axis by C-H...O hydrogen bonds.
  • Item
    {N,N-Bis[bis(2,2,2-trifluoroethoxy)phosphanyl]methylamine- κ2 P,P′}bis(η5-cyclopentadienyl) titanium(II)
    (Chester : International Union of Crystallography, 2013) Haehnel, M.; Hansen, S.; Spannenberg, A.; Beweries, T.
    The title compound, [Ti(C5H5)2(C 9H11F12NO4P2)], is a four-membered titanacycle obtained from the reaction of Cp2Ti(η 2-Me3SiC2SiMe3) and CH 3N[P(OCH2CF3)2]2 {N,N-bis[bis(trifluoroethoxy)phosphanyl]methylamine, tfepma}. The Ti II atom is coordinated by two cyclopentadienyl (Cp) ligands and the chelating tfepma ligand in a strongly distorted tetrahedral geometry. The molecule is located on a mirror plane.
  • Item
    Dicyclohexylbis(naphthalen-1-ylmethyl)phosphonium chloride chloroform disolvate
    (Chester : International Union of Crystallography, 2012) Gowrisankar, S.; Neumann, H.; Spannenberg, A.; Beller, M.
    In the title solvated phosphonium salt, C34H40P+·Cl -·2CHCl3, the two cyclohexyl and two 1-naphthylmethyl groups at the P atom are in a distorted tetrahedral arrangement [105.26 (6)-113.35 (6)°]. Both cyclohexyl rings adopt a chair conformation. The dihedral angle between the naphthyl ring systems is 74.08 (3)°.
  • Item
    Intermolecular hydrogen bonding in isostructural pincer complexes [OH-(t-BuPOCOPt-Bu)MCl] (M = Pd and Pt)
    (Chester : International Union of Crystallography, 2019) Joksch, M.; Spannenberg, A.; Beweries, T.
    In the crystal structure of the isostructural title compounds, namely {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridopalladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis[(di-tert-butylphosphanyl)oxy]-4-hydroxyphenyl}chloridoplatinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an interaction of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.
  • Item
    Dicarbonyl-{3,3′-di-tert-butyl-5,5′-di-methoxy-2, 2′-bis[(4,4,5,5-tetraphenyl-1,3,2-dioxaphospho-lan-2-yl)-oxy-κP] biphen-yl}hydridorhodium(I) diethyl ether monosolvate
    (Chester : International Union of Crystallography, 2012) Selent, D.; Spannenberg, A.; Börner, A.
    In the title compound, [Rh(C 74H 68O 8P2)H(CO) 2]·C 4H 10O, the C 2HP 2 coordination set at the Rh I ion is arranged in a distorted trigonal-planar geometry with one P atom of the diphosphite mol-ecule and the H atom adopting the axial coordination sites.
  • Item
    2,4-Bis(diphenyl-phosphan-yl)-1,1,2,3,3,4-hexa-phenyl-1,3-diphospha-2, 4-dibora-cyclo-butane tetra-hydro-furan sesqui-solvate
    (Chester : International Union of Crystallography, 2012) Peulecke, N.; Müller, B.H.; Spannenberg, A.; Rosenthal, U.
    In the title compound, C60H50B2P 4·1.5C4H8O, the diphospha-diborane mol-ecule lies on an inversion centre, whereas the disordered tetra-hydro-furan solvent mol-ecule is in a general position with a partial occupancy of 0.75. The diphosphadiborane mol-ecule consists of an ideal planar four-membered B 2P2 ring with an additional phenyl and a-PPH2 group attached to each B atom.
  • Item
    (Cyanido-κC)(2,2-diphenylacetamido-κ2 N,O)bis(η5-pentamethylcyclopentadienyl)zirconium(IV)
    (Chester : International Union of Crystallography, 2014) Becker, L.; Spannenberg, A.; Arndt, P.; Rosenthal, U.
    In the title compound, [Zr(C10H15)2(C14H12NO)(CN)], the ZrIV atom is coordinated by two pentamethylcyclopentadienyl ligands, the amidate ligand via the N and O atoms, and an additional C N ligand. The four-membered metallacycle is nearly planar (r.m.s. deviation = 0.008Å). In the crystal, the molecules are connected into centrosymmetric dimers via pairs of N - HN hydrogen bonds.
  • Item
    Dehydroabietylamine-Based Cellulose Nanofibril Films: A New Class of Sustainable Biomaterials for Highly Efficient, Broad-Spectrum Antimicrobial Effects
    (Washington, DC : ACS Publications, 2019) Hassan, Ghada; Forsman, Nina; Wan, Xing; Keurulainen, Leena; Bimbo, Luis M.; Johansson, Leena-Sisko; Sipari, Nina; Yli-Kauhaluoma, Jari; Zimmermann, Ralf; Stehl, Susanne; Werner, Carsten; Saris, Per E.J.; Österberg, Monika; Moreira, Vânia M.
    The design of antimicrobial surfaces as integral parts of advanced biomaterials is nowadays a high research priority, as the accumulation of microorganisms on surfaces inflicts substantial costs on the health and industry sectors. At present, there is a growing interest in designing functional materials from polymers abundant in nature, such as cellulose, that combine sustainability with outstanding mechanical properties and economic production. There is also the need to find suitable replacements for antimicrobial silver-based agents due to environmental toxicity and spread of resistance to metal antimicrobials. Herein we report the unprecedented decoration of cellulose nanofibril (CNF) films with dehydroabietylamine 1 (CNF-CMC-1), to give an innovative contact-active surface active against Gram-positive and Gram-negative bacteria including the methicillin-resistant S. aureus MRSA14TK301, with low potential to spread resistance and good biocompatibility, all achieved with low surface coverage. CNF-CMC-1 was particularly effective against S. aureus ATCC12528, causing virtually complete reduction of the total cells from 10 5 colony forming units (CFU)/mL bacterial suspensions, after 24 h of contact. This gentle chemical modification of the surface of CNF fully retained the beneficial properties of the original film, including moisture buffering and strength, relevant in many potential applications. Our originally designed surface represents a new class of ecofriendly biomaterials that optimizes the performance of CNF by adding antimicrobial properties without the need for environmentally toxic silver. © Copyright 2019 American Chemical Society.
  • Item
    Structure-property relationships in nanoporous metallic glasses
    (Amsterdam [u.a.] : Elsevier Science, 2016) Şopu, D.; Soyarslan, C.; Sarac, B.; Bargmann, S.; Stoica, M.; Eckert, J.
    We investigate the influence of various critical structural aspects such as pore density, distribution, size and number on the deformation behavior of nanoporous Cu64 Zr36 glass. By using molecular dynamics and finite element simulations an effective strategy to control the strain localization in nanoporous heterostructures is provided. Depending on the pore distribution in the heterostructure, upon tensile loading the nanoporous glass showed a clear transition from a catastrophic fracture to localized deformation in one dominant shear band, and ultimately to homogeneous plastic flow mediated by a pattern of multiple shear bands. The change in the fracture mechanism from a shear band slip to necking-like homogeneous flow is quantitative interpreted by calculating the critical shear band length. Finally, we identify the most effective heterostructure with enhanced ductility as compared to the monolithic bulk metallic glass. The heterostructure with a fraction of pores of about 3% distributed in such a way that the pores do not align along the maximum shear stress direction shows higher plasticity while retaining almost the same strength as the monolithic glass. Our results provide clear evidence that the mechanical properties of nanoporous glassy materials can be tailored by carefully controlling the design parameters.