Search Results

Now showing 1 - 3 of 3
  • Item
    Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR
    (Basel : MDPI AG, 2019) Tsoulias, Nikos; Paraforos, Dimitrios S.; Fountas, Spyros; Zude-Sasse, Manuela
    Data of canopy morphology are crucial for cultivation tasks within orchards. In this study, a 2D light detection and range (LiDAR) laser scanner system was mounted on a tractor, tested on a box with known dimensions (1.81 m × 0.6 m × 0.6 m), and applied in an apple orchard to obtain the 3D structural parameters of the trees (n = 224). The analysis of a metal box which considered the height of four sides resulted in a mean absolute error (MAE) of 8.18 mm with a bias (MBE) of 2.75 mm, representing a root mean square error (RMSE) of 1.63% due to gaps in the point cloud and increased incident angle with enhanced distance between laser aperture and the object. A methodology based on a bivariate point density histogram is proposed to estimate the stem position of each tree. The cylindrical boundary was projected around the estimated stem positions to segment each individual tree. Subsequently, height, stem diameter, and volume of the segmented tree point clouds were estimated and compared with manual measurements. The estimated stem position of each tree was defined using a real time kinematic global navigation satellite system, (RTK-GNSS) resulting in an MAE and MBE of 33.7 mm and 36.5 mm, respectively. The coefficient of determination (R2) considering manual measurements and estimated data from the segmented point clouds appeared high with, respectively, R2 and RMSE of 0.87 and 5.71% for height, 0.88 and 2.23% for stem diameter, as well as 0.77 and 4.64% for canopy volume. Since a certain error for the height and volume measured manually can be assumed, the LiDAR approach provides an alternative to manual readings with the advantage of getting tree individual data of the entire orchard.
  • Item
    An alternative to field retting: Fibrous materials based on wet preserved hemp for the manufacture of composites
    (Basel : MDPI AG, 2019) Gusovius, H.-J.; Lühr, C.; Hoffmann, T.; Pecenka, R.; Idler, C.
    A process developed at the Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB) for the supply and processing of wet-preserved fiber plants opens up new potential uses for such resources. The processing of industrial hemp into fiber materials and products thereof is undergoing experimental research along the value-added chain from the growing process through to the manufacturing of product samples. The process comprises the direct harvesting of the field-fresh hemp and the subsequent anaerobic storage of the entire plant material. Thus, process risk due to unfavorable weather conditions is prevented in contrast to common dew retting procedures. The effects of the anaerobic storage processes on the properties of the bast part of the plant material are comparable to the results of common retting procedures. Harvest storage, as well as further mechanical processing, leads to different geometrical properties compared to the bast fibers resulting from traditional post harvesting treatment and decortication. The fiber raw material obtained in this way is well suited to the production of fiberboards and the reinforcement of polymer or mineral bonded composites. The objective of this paper is to present recent research results on final products extended by a comprehensive overview of the whole supply chain in order to enable further understanding of the result influencing aspects of prior process steps.
  • Item
    Effects of Pre-Processing Short-Term Hot-Water Treatments on Quality and Shelf Life of Fresh-Cut Apple Slices
    (Basel : MDPI AG, 2019) Rux, Guido; Efe, Efecan; Ulrichs, Christian; Huyskens-Keil, Susanne; Hassenberg, Karin; Herppich, Werner B.
    Processing, especially cutting, reduces the shelf life of fruits. In practice, fresh-cut fruit salads are, therefore, often sold immersed in sugar syrups to increase shelf life. Pre-processing short-term hot-water treatments (sHWT) may further extend the shelf life of fresh-cuts by effectively reducing microbial contaminations before cutting. In this study, fresh-cut ‘Braeburn’ apples, a major component of fruit salads, were short-term (30 s) hot water-treated (55 °C or 65 °C), partially treated with a commercial anti-browning solution (ascorbic/citric acid) after cutting and, thereafter, stored immersed in sugar syrup. To, for the first time, comprehensively and comparatively evaluate the currently unexplored positive or negative effects of these treatments on fruit quality and shelf life, relevant parameters were analyzed at defined intervals during storage at 4 °C for up to 13 days. Compared to acid pre-treated controls, sHWT significantly reduced the microbial loads of apple slices but did not affect their quality during the 5 day-standard shelf life period of fresh-cuts. Yeasts were most critical for shelf life of fresh-cut apples immersed in sugar syrup. The combination of sHWT and post-processing acid treatment did not further improve quality or extend shelf life. Although sHWT could not extend potential maximum shelf life beyond 10 d, results highlighted the potentials of this technique to replace pre-processing chemical treatments and, thus, to save valuable resources.