Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Persistent peri-Heptacene: Synthesis and In Situ Characterization

2021, Ajayakumar, M.R., Ma, Ji, Lucotti, Andrea, Schellhammer, Karl Sebastian, Serra, Gianluca, Dmitrieva, Evgenia, Rosenkranz, Marco, Komber, Hartmut, Liu, Junzhi, Ortmann, Frank, Tommasini, Matteo, Feng, Xinliang

n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3). © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Role of Graphene in Constructing Multilayer Plasmonic SERS Substrate with Graphene/AgNPs as Chemical Mechanism - Electromagnetic Mechanism Unit

2020, Liu, Lu, Hou, Shuting, Zhao, Xiaofei, Liu, Chundong, Li, Zhen, Li, Chonghui, Xu, Shicai, Wang, Guilin, Yu, Jing, Zhang, Chao, Man, Baoyuan

Graphene–metal substrates have received widespread attention due to their superior surface-enhanced Raman scattering (SERS) performance. The strong coupling between graphene and metal particles can greatly improve the SERS performance and thus broaden the application fields. The way in which to make full use of the synergistic effect of the hybrid is still a key issue to improve SERS activity and stability. Here, we used graphene as a chemical mechanism (CM) layer and Ag nanoparticles (AgNPs) as an electromagnetic mechanism (EM) layer, forming a CM–EM unit and constructing a multi-layer hybrid structure as a SERS substrate. The improved SERS performance of the multilayer nanostructure was investigated experimentally and in theory. We demonstrated that the Raman enhancement effect increased as the number of CM–EM units increased, remaining nearly unchanged when the CM–EM unit was more than four. The limit of detection was down to 10−14 M for rhodamine 6G (R6G) and 10−12 M for crystal violet (CV), which confirmed the ultrahigh sensitivity of the multilayer SERS substrate. Furthermore, we investigated the reproducibility and thermal stability of the proposed multilayer SERS substrate. On the basis of these promising results, the development of new materials and novel methods for high performance sensing and biosensing applications will be promoted.

Loading...
Thumbnail Image
Item

Large-Area Single-Crystal Graphene via Self-Organization at the Macroscale

2020, Ta, Huy Quang, Bachmatiuk, Alicja, Mendes, Rafael Gregorio, Perello, David J., Zhao, Liang, Trzebicka, Barbara, Gemming, Thomas, Rotkin, Slava V., Rümmeli, Mark H.

In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize. It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale. © 2020 The Authors. Published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

High-Quality Graphene Using Boudouard Reaction

2022, Grebenko, Artem K., Krasnikov, Dmitry V., Bubis, Anton V., Stolyarov, Vasily S., Vyalikh, Denis V., Makarova, Anna A., Fedorov, Alexander, Aitkulova, Aisuluu, Alekseeva, Alena A., Gilshtein, Evgeniia, Bedran, Zakhar, Shmakov, Alexander N., Alyabyeva, Liudmila, Mozhchil, Rais N., Ionov, Andrey M., Gorshunov, Boris P., Laasonen, Kari, Podzorov, Vitaly, Nasibulin, Albert G.

Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production.

Loading...
Thumbnail Image
Item

Exceptionally High Blocking Temperature of 17 K in a Surface-Supported Molecular Magnet

2021, Paschke, Fabian, Birk, Tobias, Enenkel, Vivien, Liu, Fupin, Romankov, Vladyslav, Dreiser, Jan, Popov, Alexey A., Fonin, Mikhail

Single-molecule magnets (SMMs) are among the most promising building blocks for future magnetic data storage or quantum computing applications, owing to magnetic bistability and long magnetic relaxation times. The practical device integration requires realization of 2D surface assemblies of SMMs, where each magnetic unit shows magnetic relaxation being sufficiently slow at application-relevant temperatures. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, it is shown that sub-monolayers of Dy2 @C80 (CH2 Ph) dimetallofullerenes prepared on graphene by electrospray deposition exhibit magnetic behavior fully comparable to that of the bulk. Magnetic hysteresis and relaxation time measurements show that the magnetic moment remains stable for 100 s at 17 K, marking the blocking temperature TB(100) , being not only in excellent agreement with that of the bulk sample but also representing by far the highest one detected for a surface-supported single-molecule magnet. The reported findings give a boost to the efforts to stabilize and address the spin degree of freedom in molecular magnets aiming at the realization of SMM-based spintronic units.

Loading...
Thumbnail Image
Item

Imperceptible Supercapacitors with High Area-Specific Capacitance

2021, Ge, Jin, Zhu, Minshen, Eisner, Eric, Yin, Yin, Dong, Haiyun, Karnaushenko, Dmitriy D., Karnaushenko, Daniil, Zhu, Feng, Ma, Libo, Schmidt, Oliver G.

Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.

Loading...
Thumbnail Image
Item

On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers

2021, Yang, Xiaoqin, Ta, Huy Q., Hu, Huimin, Liu, Shuyuan, Liu, Yu, Bachmatiuk, Alicja, Luo, Jinping, Liu, Lijun, Choi, Jin-Ho, Rummeli, Mark H.

In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene

2020, Shi, Q., Tokarska, K., Ta, H.Q., Yang, X., Liu, Y., Ullah, S., Liu, L., Trzebicka, B., Bachmatiuk, A., Sun, J., Fu, L., Liu, Z., Rümmeli, M.H.

Since the isolation of graphene and numerous demonstrations of its unique properties, the expectations for this material to be implemented in many future commercial applications have been enormous. However, to date, challenges still remain. One of the key challenges is the fabrication of graphene in a manner that satisfies processing requirements. While transfer of graphene can be used, this tends to damage or contaminate it, which degrades its performance. Hence, there is an important drive to grow graphene directly over a number of technologically important materials, viz., different substrate materials, so as to avoid the need for transfer. One of the more successful approaches to synthesis graphene is chemical vapor deposition (CVD), which is well established. Historically, transition metal substrates are used due to their catalytic properties. However, in recent years this has developed to include many nonmetal substrate systems. Moreover, both solid and molten substrate forms have also been demonstrated. In addition, the current trend to progress flexible devices has spurred interest in graphene growth directly over flexible materials surfaces. All these aspects are presented in this review which presents the developments in available substrates for graphene fabrication by CVD, with a focus primarily on large area graphene.