Search Results

Now showing 1 - 10 of 141
  • Item
    Phenazine Radical Cations as Efficient Homogeneous and Heterogeneous Catalysts for the Cross-Dehydrogenative Aza-Henry Reaction
    (New York, NY : Wiley-VCH, 2020) Unglaube, Felix; Hünemörder, Paul; Guo, Xuewen; Chen, Zixu; Wang, Dengxu; Mejía, Esteban
    The redox activity of molecular phenazine catalysts has been previously exploited for aerobic oxidative amine homo- and cross-coupling reactions. In this contribution, we have extended the reaction scope of this novel type of organocatalyst and used them in the cross-dehydrogenative aza-Henry coupling of isoquinolines with nitromethane under aerobic conditions. Additionally, we have designed and prepared a novel porous organic polymer by cross-linking of tetrakis(4-bromophenyl)silane and dihydrophenazine through Pd-catalyzed Buchwald-Hartwig cross-coupling. This new type of heterogeneous catalyst, apart from being robust and easily reusable, also showed outstanding catalytic activities and improved selectivity compared to its molecular counterpart. A plausible reaction mechanism was proposed based on spectroscopic and kinetic measurements. © 2020 The Authors. Helvetica Chimica Acta published by Wiley-VHCA AG, Zurich, Switzerland
  • Item
    Photocatalytic Reduction of CO2 by Metal-Free-Based Materials: Recent Advances and Future Perspective
    (Weinheim : Wiley-VCH, 2020) Shen, Huidong; Peppel, Tim; Strunk, Jennifer; Sun, Zhenyu
    Photocatalytic CO2 reduction to produce valuable chemicals and fuels using solar energy provides an appealing route to alleviate global energy and environmental problems. Searching for photocatalysts with high activity and selectivity for CO2 conversion is the key to achieving this goal. Among the various proposed photocatalysts, metal-free materials, such as graphene, nitrides, carbides, and conjugated organic polymers, have gained extensive research interest for photocatalytic CO2 reduction, due to their earth abundance, cost-effectiveness, good electrical conductivity, and environmental friendliness. They exhibit prominent catalytic activity, impressive selectivity, and long durability for the conversion of CO2 to solar fuels. Herein, the recent progress on metal-free photocatalysis of CO2 reduction is systematically reviewed. Opportunities and challenges on modification of nonmetallic catalysts to enhance CO2 transformation are presented. Theoretical calculations on possible reduction mechanisms and pathways as well as the potential in situ and operando techniques for mechanistic understanding are also summarized and discussed. Based on the aforementioned discussions, suitable future research directions and perspectives for the design and development of potential nonmetallic photocatalysts for efficient CO2 reduction are provided. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: Investigation and mechanistic insights
    (Cambridge : RSC, 2020) Léval, Alexander; Agapova, Anastasiya; Steinlechner, Christoph; Alberico, Elisabetta; Junge, Henrik; Beller, Matthias
    Formic acid dehydrogenation (FAD) is considered as a promising process in the context of hydrogen storage. Its low toxicity, availability and convenient handling make FA attractive as a potential hydrogen carrier. To date, most promising catalysts have been based on noble metals, such as ruthenium and iridium. Efficient non-noble metal systems like iron were designed but manganese remains relatively unexplored for this transformation. In this work, we present a panel of phosphine free manganese catalysts which showed activity and stability in formic acid dehydrogenation. The most promising results were obtained with Mn(pyridine-imidazoline)(CO)3Br yielding >14 l of the H2/CO2 mixture and proved to be stable for more than 3 days. Additionally, this study provides insights into the mechanism of formic acid dehydrogenation. Kinetic experiments, Kinetic Isotopic Effect (KIE), in situ observations, NMR labeling experiments and pH monitoring allow us to propose a catalytic cycle for this transformation.
  • Item
    PDA Indolylmaleimides Induce Anti-Tumor Effects in Prostate Carcinoma Cell Lines Through Mitotic Death
    (Lausanne : Frontiers Research Foundation, 2021) Schille, Jan Torben; Nolte, Ingo; Beck, Julia; Jilani, Daria; Roolf, Catrin; Pews-Davtyan, Anahit; Rolfs, Arndt; Henze, Larissa; Beller, Matthias; Brenig, Bertram; Junghanss, Christian; Schütz, Ekkehard; Murua Escobar, Hugo
    Castrate resistant prostate cancer in men shares several characteristics with canine prostate cancer (PCa). Due to current insufficient therapies, evaluating novel therapeutic agents for late-stage PCa is of considerable interest for both species. PDA indolylmaleimides showed anticancer effects in several neoplastic cell lines. Herein, a comparative characterization of PDA-66 and PDA-377 mediated effects was performed in human and canine PCa cell lines, which is also the first detailed characterization of these agents on cells derived from solid tumors in general. While PDA-377 showed only weak growth inhibition on human PCa cell lines, PDA-66 inhibited proliferation and induced apoptosis in human and canine cell lines with concentrations in the low micromolar range. Morphological characterization and whole transcriptome sequencing revealed that PDA-66 induces mitotic death through its microtubule-depolymerizing ability. PDA-66 appears to be a worthwhile anti-mitotic agent for further evaluation. The similarities in cellular and molecular response observed in the cell lines of both origins form a solid basis for the use of canine PCa in vivo models to gain valuable interchangeable data to the advantage of both species.
  • Item
    On the avoidance of crossing of singular values in the evolving factor analysis
    (New York, NY : Wiley Interscience, 2020) Neymeyr, Klaus; Sawall, Mathias; Rasouli, Zahra; Maeder, Marcel
    Evolving factor analysis (EFA) investigates the evolution of the singular values of matrices formed by a series of measured spectra, typically, resulting from the spectral observation of an ongoing chemical process. In the original EFA, the logarithms of the singular values are plotted for submatrices that include an increasing number of spectra. A typical observation in these plots is that pairs of trajectories of the singular values are on a collision course, but finally, the curves seem to repel each other and then run in different directions. For parameter-dependent square matrices, such a behaviour is known for the eigenvalues under the keyword of an avoidance of crossing. Here, we adjust the explanation of this avoidance of crossing to the curves of singular values of EFA. Further, a condition is studied that breaks this avoidance of crossing. We demonstrate that the understanding of this noncrossing allows us to design model data sets with a predictable crossing behaviour. © 2020 John Wiley & Sons, Ltd.
  • Item
    3,3-Difluoroallyl ammonium salts: highly versatile, stable and selective gem-difluoroallylation reagents
    ([London] : Nature Publishing Group UK, 2021) Ye, Fei; Ge, Yao; Spannenberg, Anke; Neumann, Helfried; Xu, Li-Wen; Beller, Matthias
    The selective synthesis of fluorinated organic molecules continues to be of major importance for the development of bioactive compounds (agrochemicals and pharmaceuticals) as well as unique materials. Among the established synthetic toolbox for incorporation of fluorine-containing units, efficient and general reagents for introducing -CF2- groups have been largely neglected. Here, we present the synthesis of 3,3-difluoropropen-1-yl ammonium salts (DFPAs) as stable, and scalable gem-difluoromethylation reagents, which allow for the direct reaction with a wide range of fascinating nucleophiles. DFPAs smoothly react with N-, O-, S-, Se-, and C-nucleophiles under mild conditions without necessity of metal catalysts with exclusive regioselectivity. In this way, the presented reagents also permit the straightforward preparation of many analogues of existing pharmaceuticals.
  • Item
    Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH)
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Rowolt, Christian; Milkereit, Benjamin; Springer, Armin; Kreyenschulte, Carsten; Kessler, Olaf
    Continuous heating transformation (CHT) diagrams and continuous cooling transformation (CCT) diagrams of precipitation-hardening steels have the drawback that important information on the dissolution and precipitation of Cu-rich phases during continuous heating and cooling are missing. This work uses a comparison of different techniques, namely dilatometry and differential scanning calorimetry for the in situ analysis of the so far neglected dissolution and precipitation of Cu-rich phases during continuous heating and cooling to overcome these drawbacks. Compared to dilatometry, DSC is much more sensitive to phase transformation affecting small volume fractions, like precipitation. Thus, the important solvus temperature for the dissolution of Cu-rich phases was revealed from DSC and integrated into the CHT diagram. Moreover, DSC reveals that during continuous cooling from solution treatment, premature Cu-rich phases may form depending on cooling rate. Those quench-induced precipitates were analysed for a broad range of cooling rates and imaged for microstructural analysis using optical microscopy, scanning electron microscopy and transmission electron microscopy. This information substantially improves the CCT diagram.
  • Item
    (S)-Alanine ethyl ester tetra­cyanidoborate, (C5H12NO)[B(CN)4]
    (Chester : IUCr, 2021) Peppel, T.; Köckerling, M.
    The title mol­ecular salt, C5H12NO+·C4BN4− or (C5H12NO)[B(CN)4], was obtained as single crystals by slow evaporation of a solution of the compound in aceto­nitrile over several weeks. The asymmetric unit contains two (S)-alanine ethyl ester cations and two tetra­cyanidoborate anions, which are linked by N—H...N hydrogen bonds. The compound exhibits a relatively low melting point of 110°C and shows a solid–solid phase transition near room temperature (Ts–s = 29°C) on the basis of DSC measurements.
  • Item
    Effect of chemical solvents on the wetting behavior over time of femtosecond laser structured ti6al4v surfaces
    (Basel : MDPI, 2020) Schnell, Georg; Polley, Christian; Bartling, Stephan; Seitz, Hermann
    The effect of chemical solvents on the wetting state of laser-structured surfaces over time is systematically examined in this paper. By using a 300-fs laser, nanostructures were generated on Ti6Al4V, subsequently cleaned in an ultrasonic bath with different solvents and stored in ambient air. The static contact angle showed significant differences for cleaning with various solvents, which, depending on the applied cleaning and time, amounted up to 100°. X-ray photoelectron spectroscopy analyses reveal that the cleaning of the laser-structured surfaces affects the surface chemistry and the aging behavior of the surfaces, even with highly volatile solvents. The effect of the chemical surface modification is particularly noticeable when using alcohols for cleaning, which, due to their OH groups, cause highly hydrophilic behavior of the surface after one day of storage. Over the course of 14 days, enrichment with organic groups from the atmosphere occurs on the surface, which leads to poorer wetting on almost every structured surface. In contrast, the cleaning in hexane leads to a fast saturation of the surface with long-chain carbon groups and thus to a time-independent hydrophobic behavior.
  • Item
    Synthesis of flow‐compatible Ru-Me/Al2O3 catalysts and their application in hydrogenation of 1-iodo-4-nitrobenzene
    ([Cham] : Springer International Publishing, 2021) Sebek, Michael; Atia, Hanan; Steinfeldt, Norbert
    The development of an active, selective, and long-term stable heterogeneous catalyst for the reductive hydrogenation of substituted nitrorarenes in continuous operation mode is still challenging. In this work, Ru based nanoparticles catalysts promoted with different transition metals (Zn, Co, Cu, Sn, or Fe) were supported on alumina spheres using spray wet impregnation method. The freshly prepared catalysts were characterized using complementary methods including scanning transmission electron microscopy (STEM) and temperature programmed reduction (TPR). The hydrogenation of 1-iodo-4-nitrobenzene served as model reaction to assess the catalytic performance of the prepared catalysts. The addition of the promotor affected the reducibility of Ru nanoparticles as well as the performance of the catalyst in the hydrogenation reaction. The highest yield of 4-iodoaniline (89 %) was obtained in a continuous flow process using Ru-Sn/Al2O3. The performance of this catalyst was also followed in a long-term experiment. With increasing operation time, a catalyst deactivation occurred which could only briefly compensate by an increase of the reaction temperature.