Search Results

Now showing 1 - 5 of 5
  • Item
    Influence of Autapses on Synchronization in Neural Networks With Chemical Synapses
    (Lausanne : Frontiers Media, 2020) Protachevicz, Paulo R.; Iarosz, Kelly C.; Caldas, Iberê L.; Antonopoulos, Chris G.; Batista, Antonio M.; Kurths, Jürgen
    A great deal of research has been devoted on the investigation of neural dynamics in various network topologies. However, only a few studies have focused on the influence of autapses, synapses from a neuron onto itself via closed loops, on neural synchronization. Here, we build a random network with adaptive exponential integrate-and-fire neurons coupled with chemical synapses, equipped with autapses, to study the effect of the latter on synchronous behavior. We consider time delay in the conductance of the pre-synaptic neuron for excitatory and inhibitory connections. Interestingly, in neural networks consisting of both excitatory and inhibitory neurons, we uncover that synchronous behavior depends on their synapse type. Our results provide evidence on the synchronous and desynchronous activities that emerge in random neural networks with chemical, inhibitory and excitatory synapses where neurons are equipped with autapses. © Copyright © 2020 Protachevicz, Iarosz, Caldas, Antonopoulos, Batista and Kurths.
  • Item
    Influence of Delayed Conductance on Neuronal Synchronization
    (Lausanne : Frontiers Media, 2020) Protachevicz, Paulo R.; Borges, Fernando S.; Iarosz, Kelly C.; Baptista, Murilo S.; Lameu, Ewandson L.; Hansen, Matheus; Caldas, Iberê L.; Szezech Jr., José D.; Batista, Antonio M.; Kurths, Jürgen
    In the brain, the excitation-inhibition balance prevents abnormal synchronous behavior. However, known synaptic conductance intensity can be insufficient to account for the undesired synchronization. Due to this fact, we consider time delay in excitatory and inhibitory conductances and study its effect on the neuronal synchronization. In this work, we build a neuronal network composed of adaptive integrate-and-fire neurons coupled by means of delayed conductances. We observe that the time delay in the excitatory and inhibitory conductivities can alter both the state of the collective behavior (synchronous or desynchronous) and its type (spike or burst). For the weak coupling regime, we find that synchronization appears associated with neurons behaving with extremes highest and lowest mean firing frequency, in contrast to when desynchronization is present when neurons do not exhibit extreme values for the firing frequency. Synchronization can also be characterized by neurons presenting either the highest or the lowest levels in the mean synaptic current. For the strong coupling, synchronous burst activities can occur for delays in the inhibitory conductivity. For approximately equal-length delays in the excitatory and inhibitory conductances, desynchronous spikes activities are identified for both weak and strong coupling regimes. Therefore, our results show that not only the conductance intensity, but also short delays in the inhibitory conductance are relevant to avoid abnormal neuronal synchronization. © Copyright © 2020 Protachevicz, Borges, Iarosz, Baptista, Lameu, Hansen, Caldas, Szezech, Batista and Kurths.
  • Item
    Influence of Sound on Empirical Brain Networks
    (Lausanne : Frontiers Media, 2021) Sawicki, Jakub; Schöll, Eckehard
    We analyze the influence of an external sound source in a network of FitzHugh–Nagumo oscillators with empirical structural connectivity measured in healthy human subjects. We report synchronization patterns, induced by the frequency of the sound source. We show that the level of synchrony can be enhanced by choosing the frequency of the sound source and its amplitude as control parameters for synchronization patterns. We discuss a minimum model elucidating the modalities of the influence of music on the human brain.
  • Item
    Recurrence flow measure of nonlinear dependence
    (Berlin ; Heidelberg : Springer, 2022) Braun, Tobias; Kraemer, K. Hauke; Marwan, Norbert
    Couplings in complex real-world systems are often nonlinear and scale dependent. In many cases, it is crucial to consider a multitude of interlinked variables and the strengths of their correlations to adequately fathom the dynamics of a high-dimensional nonlinear system. We propose a recurrence-based dependence measure that quantifies the relationship between multiple time series based on the predictability of their joint evolution. The statistical analysis of recurrence plots (RPs) is a powerful framework in nonlinear time series analysis that has proven to be effective in addressing many fundamental problems, e.g., regime shift detection and identification of couplings. The recurrence flow through an RP exploits artifacts in the formation of diagonal lines, a structure in RPs that reflects periods of predictable dynamics. Using time-delayed variables of a deterministic uni-/multivariate system, lagged dependencies with potentially many time scales can be captured by the recurrence flow measure. Given an RP, no parameters are required for its computation. We showcase the scope of the method for quantifying lagged nonlinear correlations and put a focus on the delay selection problem in time-delay embedding which is often used for attractor reconstruction. The recurrence flow measure of dependence helps to identify non-uniform delays and appears as a promising foundation for a recurrence-based state space reconstruction algorithm.
  • Item
    Noise-induced dynamical regimes in a system of globally coupled excitable units
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Klinshov, Vladimir V.; Kirillov, Sergey Yu.; Nekorkin, Vladimir I.; Wolfrum, Matthias
    We study the interplay of global attractive coupling and individual noise in a system of identical active rotators in the excitable regime. Performing a numerical bifurcation analysis of the nonlocal nonlinear Fokker-Planck equation for the thermodynamic limit, we identify a complex bifurcation scenario with regions of different dynamical regimes, including collective oscillations and coexistence of states with different levels of activity. In systems of finite size this leads to additional dynamical features, such as collective excitability of different types, noise-induced switching and bursting. Moreover, we show how characteristic quantities such as macroscopic and microscopic variability of inter spike intervals can depend in a non-monotonous way on the noise level.