Search Results

Now showing 1 - 4 of 4
  • Item
    Sonication-assisted liquid phase exfoliation of two-dimensional CrTe3 under inert conditions
    (Amsterdam [u.a.] : Elsevier Science, 2023) Synnatschke, Kevin; Moses Badlyan, Narine; Wrzesińska, Angelika; Lozano Onrubia, Guillermo; Hansen, Anna–Lena; Wolff, Stefan; Tornatzky, Hans; Bensch, Wolfgang; Vaynzof, Yana; Maultzsch, Janina; Backes, Claudia
    Liquid phase exfoliation (LPE) has been used for the successful fabrication of nanosheets from a large number of van der Waals materials. While this allows to study fundamental changes of material properties’ associated with reduced dimensions, it also changes the chemistry of many materials due to a significant increase of the effective surface area, often accompanied with enhanced reactivity and accelerated oxidation. To prevent material decomposition, LPE and processing in inert atmosphere have been developed, which enables the preparation of pristine nanomaterials, and to systematically study compositional changes over time for different storage conditions. Here, we demonstrate the inert exfoliation of the oxidation-sensitive van der Waals crystal, CrTe3. The pristine nanomaterial was purified and size-selected by centrifugation, nanosheet dimensions in the fractions quantified by atomic force microscopy and studied by Raman, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and photo spectroscopic measurements. We find a dependence of the relative intensities of the CrTe3 Raman modes on the propagation direction of the incident light, which prevents a correlation of the Raman spectral profile to the nanosheet dimensions. XPS and EDX reveal that the contribution of surface oxides to the spectra is reduced after exfoliation compared to the bulk material. Further, the decomposition mechanism of the nanosheets was studied by time-dependent extinction measurements after water titration experiments to initially dry solvents, which suggest that water plays a significant role in the material decomposition.
  • Item
    Charge transfer characteristics of F6TCNNQ–gold interface
    (Chichester [u.a.] : Wiley, 2020) Kuhrt, Robert; Hantusch, Martin; Knupfer, Martin; Büchner, Bernd
    The metal–organic interface between polycrystalline gold and hexafluorotetracyanonaphthoquinodimethane (F6TCNNQ) was investigated by photoelectron spectroscopy with the focus on the charge transfer characteristics from the metal to the molecule. The valence levels, as well as the core levels of the heterojunction, indicate a full electron transfer and a change in the chemical environment. The changes are observed in the first F6TCNNQ layers, whereas for further film growth, only neutral F6TCNNQ molecules could be detected. New occupied states below the Fermi level were observed in the valence levels, indicating a lowest unoccupied molecular orbital (LUMO) occupation due to the charge transfer. A fitting of the spectra reveals the presence of a neutral and a charged F6TCNNQ molecules, but no further species were present.
  • Item
    Acoustic resonance effects and cavitation in SAW aerosol generation
    (Amsterdam [u.a.] : Elsevier, 2023) Roudini, Mehrzad; Manuel Rosselló, Juan; Manor, Ofer; Ohl, Claus-Dieter; Winkler, Andreas
    The interaction of surface acoustic waves (SAWs) with liquids enables the production of aerosols with adjustable droplet sizes in the micrometer range expelled from a very compact source. Understanding the nonlinear acousto-hydrodynamics of SAWs with a regulated micro-scale liquid film is essential for acousto-microfluidics platforms, particularly aerosol generators. In this study, we demonstrate the presence of micro-cavitation in a MHz-frequency SAW aerosol generation platform, which is touted as a leap in aerosol technology with versatile application fields including biomolecule inhalation therapy, micro-chromatography and spectroscopy, olfactory displays, and material deposition. Using analysis methods with high temporal and spatial resolution, we demonstrate that SAWs stabilize spatially arranged liquid micro-domes atop the generator's surface. Our experiments show that these liquid domes become acoustic resonators with highly fluctuating pressure amplitudes that can even nucleate cavitation bubbles, as supported by analytical modeling. The observed fragmentation of liquid domes indicates the participation of three droplet generation mechanisms, including cavitation and capillary-wave instabilities. During aerosol generation, the cavitation bubbles contribute to the ejection of droplets from the liquid domes and also explain observed microstructural damage patterns on the chip surface eventually caused by cavitation-based erosion.
  • Item
    XPS chemical state analysis of sputter depth profiling measurements for annealed TiAl-SiO2 and TiAl-W layer stacks
    (Chichester [u.a.] : Wiley, 2020) Oswald, Steffen; Lattner, Eric; Seifert, Marietta
    For the application of surface acoustic wave sensors at high temperatures, both a high-temperature stable piezoelectric substrate and a suitable metallization for the electrodes are needed. Our current attempt is to use TiAl thin films as metallization because this material is also known to be high temperature stable. In this study, Ti/Al multilayers and Ti-Al alloy layers were prepared in combination with an SiO2 cover layer or a W barrier layer at the interface to the substrate (thermally oxidized Si or Ca3TaGa3Si2O14) as an oxidation protection. To form the high-temperature stable γ-TiAl phase and to test the thermal stability of the layer systems, thermal treatments were done in vacuum at several temperatures. We used X-ray photoelectron spectroscopy (XPS) sputter depth-profiling to investigate the film composition and oxidation behavior. In this paper, we demonstrate how the semiautomatic peak fitting can help to extract beside the elemental information also the chemical information from the measured depth profiles. © 2020 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd