Search Results

Now showing 1 - 2 of 2
  • Item
    Electronic Properties and Structure of Boron–Hydrogen Complexes in Crystalline Silicon
    (Weinheim : Wiley-VCH, 2021-9-17) De Guzman, Joyce Ann T.; Markevich, Vladimir P.; Coutinho, José; Abrosimov, Nikolay V.; Halsall, Matthew P.; Peaker, Anthony R.
    The subject of hydrogen–boron interactions in crystalline silicon is revisited with reference to light and elevated temperature-induced degradation (LeTID) in boron-doped solar silicon. Ab initio modeling of structure, binding energy, and electronic properties of complexes incorporating a substitutional boron and one or two hydrogen atoms is performed. From the calculations, it is confirmed that a BH pair is electrically inert. It is found that boron can bind two H atoms. The resulting BH2 complex is a donor with a transition level estimated at E c–0.24 eV. Experimentally, the electrically active defects in n-type Czochralski-grown Si crystals co-doped with phosphorus and boron, into which hydrogen is introduced by different methods, are investigated using junction capacitance techniques. In the deep-level transient spectroscopy (DLTS) spectra of hydrogenated Si:P + B crystals subjected to heat-treatments at 100 °C under reverse bias, an electron emission signal with an activation energy of ≈0.175 eV is detected. The trap is a donor with electronic properties close to those predicted for boron–dihydrogen. The donor character of BH2 suggests that it can be a very efficient recombination center of minority carriers in B-doped p-type Si crystals. A sequence of boron–hydrogen reactions, which can be related to the LeTID effect in Si:B is proposed.
  • Item
    Interdot Lead Halide Excess Management in PbS Quantum Dot Solar Cells
    (Weinheim : Wiley-VCH, 2022) Albaladejo‐Siguan, Miguel; Becker‐Koch, David; Baird, Elizabeth C.; Hofstetter, Yvonne J.; Carwithen, Ben P.; Kirch, Anton; Reineke, Sebastian; Bakulin, Artem A.; Paulus, Fabian; Vaynzof, Yana
    Light-harvesting devices made from lead sulfide quantum dot (QD) absorbers are one of the many promising technologies of third-generation photovoltaics. Their simple, solution-based fabrication, together with a highly tunable and broad light absorption makes their application in newly developed solar cells, particularly promising. In order to yield devices with reduced voltage and current losses, PbS QDs need to have strategically passivated surfaces, most commonly achieved through lead iodide and bromide passivation. The interdot spacing is then predominantly filled with residual amorphous lead halide species that remain from the ligand exchange, thus hindering efficient charge transport and reducing device stability. Herein, it is demonstrated that a post-treatment by iodide-based 2-phenylethlyammonium salts and intermediate 2D perovskite formation can be used to manage the lead halide excess in the PbS QD active layer. This treatment results in improved device performance and increased shelf-life stability, demonstrating the importance of interdot spacing management in PbS QD photovoltaics.