Search Results

Now showing 1 - 6 of 6
  • Item
    Efficiency of biofilm removal by combination of water jet and cold plasma: an in-vitro study
    (London : BioMed Central, 2022) Matthes, Rutger; Jablonowski, Lukasz; Pitchika, Vinay; Holtfreter, Birte; Eberhard, Christian; Seifert, Leo; Gerling, Torsten; Vilardell Scholten, Laura; Schlüter, Rabea; Kocher, Thomas
    Background: Peri-implantitis therapy is a major problem in implantology. Because of challenging rough implant surface and implant geometry, microorganisms can hide and survive in implant microstructures and impede debridement. We developed a new water jet (WJ) device and a new cold atmospheric pressure plasma (CAP) device to overcome these problems and investigated aspects of efficacy in vitro and safety with the aim to create the prerequisites for a clinical pilot study with these medical devices. Methods: We compared the efficiency of a single treatment with a WJ or curette and cotton swab (CC) without or with adjunctive use of CAP (WJ + CAP, CC + CAP) to remove biofilm in vitro from rough titanium discs. Treatment efficacy was evaluated by measuring turbidity up to 72 h for bacterial re-growth or spreading of osteoblast-like cells (MG-63) after 5 days with scanning electron microscopy. With respect to application safety, the WJ and CAP instruments were examined according to basic regulations for medical devices. Results: After 96 h of incubation all WJ and CC treated disks were turbid but 67% of WJ + CAP and 46% CC + CAP treated specimens were still clear. The increase in turbidity after WJ treatment was delayed by about 20 h compared to CC treatment. In combination with CAP the cell coverage significantly increased to 82% (WJ + CAP) or 72% (CC + CAP), compared to single treatment 11% (WJ) or 10% (CC). Conclusion: The newly developed water jet device effectively removes biofilm from rough titanium surfaces in vitro and, in combination with the new CAP device, biologically acceptable surfaces allow osteoblasts to grow. WJ in combination with CAP leads to cleaner surfaces than the usage of curette and cotton swabs with or without subsequent plasma treatment. Our next step will be a clinical pilot study with these new devices to assess the clinical healing process.
  • Item
    Identifying the presence and severity of dementia by applying interpretable machine learning techniques on structured clinical records
    (London : BioMed Central, 2022) Vyas, Akhilesh; Aisopos, Fotis; Vidal, Maria-Esther; Garrard, Peter; Paliouras, Georgios
    Background: Dementia develops as cognitive abilities deteriorate, and early detection is critical for effective preventive interventions. However, mainstream diagnostic tests and screening tools, such as CAMCOG and MMSE, often fail to detect dementia accurately. Various graph-based or feature-dependent prediction and progression models have been proposed. Whenever these models exploit information in the patients’ Electronic Medical Records, they represent promising options to identify the presence and severity of dementia more precisely. Methods: The methods presented in this paper aim to address two problems related to dementia: (a) Basic diagnosis: identifying the presence of dementia in individuals, and (b) Severity diagnosis: predicting the presence of dementia, as well as the severity of the disease. We formulate these two tasks as classification problems and address them using machine learning models based on random forests and decision tree, analysing structured clinical data from an elderly population cohort. We perform a hybrid data curation strategy in which a dementia expert is involved to verify that curation decisions are meaningful. We then employ the machine learning algorithms that classify individual episodes into a specific dementia class. Decision trees are also used for enhancing the explainability of decisions made by prediction models, allowing medical experts to identify the most crucial patient features and their threshold values for the classification of dementia. Results: Our experiment results prove that baseline arithmetic or cognitive tests, along with demographic features, can predict dementia and its severity with high accuracy. In specific, our prediction models have reached an average f1-score of 0.93 and 0.81 for problems (a) and (b), respectively. Moreover, the decision trees produced for the two issues empower the interpretability of the prediction models. Conclusions: This study proves that there can be an accurate estimation of the existence and severity of dementia disease by analysing various electronic medical record features and cognitive tests from the episodes of the elderly population. Moreover, a set of decision rules may comprise the building blocks for an efficient patient classification. Relevant clinical and screening test features (e.g. simple arithmetic or animal fluency tasks) represent precise predictors without calculating the scores of mainstream cognitive tests such as MMSE and CAMCOG. Such predictive model can identify not only meaningful features, but also justifications of classification. As a result, the predictive power of machine learning models over curated clinical data is proved, paving the path for a more accurate diagnosis of dementia.
  • Item
    Detection of fractures of hand and forearm in whole-body CT for suspected polytrauma in intubated patients
    (London : BioMed Central, 2020) Münn, F.; Laun, R.A.; Asmus, A.; Bülow, R.; Bakir, S.; Haralambiev, L.; Eisenschenk, A.; Kim, S.
    Background: The aim of this study was to evaluate the potential of whole-body CT for diagnosis of hand and forearm fractures in intubated patients with suspected polytrauma. Methods: We performed a retrospective analysis on data collected from two trauma centres in Germany, including demographics, ISS, clinical symptoms, depiction in whole-body CT, and time to diagnosis. Results: Out of 426 patients included in the study, 66 (15.5%) suffered a hand or forearm fracture. The total number of fractures was 132, the whole-body CT report mentioned 98 (74.2%). 16 (12,1%) fractures of 12 patients were diagnosed later than 24 h after admission. Late diagnoses of fractures of the hand occurred more often if the hand was not fully included in the CT scan field. The sensitivity of whole-body CT for cases with fractures of hand and/or forearm with full inclusion of the corresponding area in the scan field was 80.2%. Conclusions: This study shows that whole-body CT is a valuable diagnostic tool for hand fractures in polytrauma patients. Hands should be evaluated regardless of clinical presentation in intubated patients after suspected polytrauma if they are included in the whole-body CT. © 2020 The Author(s).
  • Item
    Use of meat juice and blood serum with a miniaturised protein microarray assay to develop a multi-parameter IgG screening test with high sample throughput potential for slaughtering pigs
    (London : BioMed Central, 2020) Loreck, Katharina; Mitrenga, Sylvia; Heinze, Regina; Ehricht, Ralf; Engemann, Claudia; Lueken, Caroline; Ploetz, Madeleine; Greiner, Matthias; Meemken, Diana
    Background: Serological screening of pig herds at the abattoir is considered a potential tool to improve meat inspection procedures and herd health management. Therefore, we previously reported the feasibility of a miniaturised protein microarray as a new serological IgG screening test for zoonotic agents and production diseases in pigs. The present study investigates whether the protein microarray-based assay is applicable for high sample throughput using either blood serum or meat juice. Material and methods: Microarrays with 12 different antigens were produced by Abbott (formerly Alere Technologies GmbH) Jena, Germany in a previously offered 'ArrayTube' platform and in an 'ArrayStrip' platform for large-scale use. A test protocol for the use of meat juice on both microarray platforms was developed. Agreement between serum and meat juice was analysed with 88 paired samples from three German abattoirs. Serum was diluted 1:50 and meat juice 1:2. ELISA results for all tested antigens from a preceding study were used as reference test to perform Receiver Operating Characteristic analysis for both test specimens on both microarray platforms. Results: High area under curve values (AUC > 0.7) were calculated for the analysis of T. gondii (0.87), Y. enterocolitica (0.97), Mycoplasma hyopneumoniae (0.84) and Actinobacillus pleuropneumoniae (0.71) with serum as the test specimen and for T. gondii (0.99), Y. enterocolitica (0.94), PRRSV (0.88), A. pleuropneumoniae (0.78) and Salmonella spp. (0.72) with meat juice as the test specimen on the ArrayStrip platform. Cohens kappa values of 0.92 for T. gondii and 0.82 for Y. enterocolitica were obtained for the comparison between serum and meat juice. When applying the new method in two further laboratories, kappa values between 0.63 and 0.94 were achieved between the laboratories for these two pathogens. Conclusion: Further development of a miniaturised pig-specific IgG protein microarray assay showed that meat juice can be used on microarray platforms. Two out of twelve tested antigens (T. gondii, Y. enterocolitica) showed high test accuracy on the ArrayTube and the ArrayStrip platform with both sample materials. © 2020 The Author(s).
  • Item
    Detection of missed fractures of hand and forearm in whole-body CT in a blinded reassessment
    (London : BioMed Central, 2021) Kim, S.; Goelz, L.; Münn, F.; Kim, D.; Millrose, M.; Eisenschenk, A.; Thelen, S.; Lautenbach, M.
    Background: We examined the visibility of fractures of hand and forearm in whole-body CT and its influence on delayed diagnosis. This study is based on a prior study on delayed diagnosis of fractures of hand and forearm in patients with suspected polytrauma. Methods: Two blinded radiologists examined CT-scans of patients with fractures of hand or forearm that were diagnosed later than 24 h after admission and control cases with unremarkable imaging of those areas. They were provided with clinical information that was documented in the admission report and were asked to examine forearm and hands. After unblinding, the visibility of fractures was determined. We examined if time of admission or slice thickness was a factor for late or missed diagnoses. Results: We included 72 known fractures in 36 cases. Of those 65 were visible. Sixteen visible fractures were diagnosed late during hospital stay. Eight more fractures were detected on revision by the radiologists. Both radiologists missed known fractures and found new fractures that were not reported by the other. Missed and late diagnoses of fractures occurred more often around 5 pm and 1 am. Slice thickness was not significantly different between fractures and cases with fractures found within 24 h and those found later. Conclusions: The number of late diagnosis or completely missed fractures of the hand and forearm may be reduced by a repeated survey of WBCT with focus on the extremities in patients with suspected polytrauma who are not conscious. Level of evidence: III © 2021, The Author(s).
  • Item
    Molecular characterisation of extended-spectrum ß-lactamase producing Escherichia coli in wild birds and cattle, Ibadan, Nigeria
    (London : BioMed Central, 2021) Fashae, Kayode; Engelmann, Ines; Monecke, Stefan; Braun, Sascha D.; Ehricht, Ralf
    Background: Antimicrobial resistance (AMR) is an increasing global health concern reducing options for therapy of infections and also for perioperative prophylaxis. Many Enterobacteriaceae cannot be treated anymore with third generation cephalosporins (3GC) due to the production of certain 3GC hydrolysing enzymes (extended spectrum beta-lactamases, ESBLs). The role of animals as carriers and vectors of multi-resistant bacteria in different geographical regions is poorly understood. Therefore, we investigated the occurrence and molecular characteristics of ESBL-producing Escherichia coli (E. coli) in wild birds and slaughtered cattle in Ibadan, Nigeria. Cattle faecal samples (n = 250) and wild bird pooled faecal samples (cattle egrets, Bubulcus ibis, n = 28; white-faced whistling duck, Dendrocygna viduata, n = 24) were collected and cultured on cefotaxime-eosin methylene blue agar. Antimicrobial susceptibility was determined by agar diffusion assays and all 3GC resistant isolates were genotypically characterised for AMR genes, virulence associated genes (VAGs) and serotypes using DNA microarray-based assays. Results: All 3GC resistant isolates were E. coli: cattle (n = 53), egrets (n = 87) and whistling duck (n = 4); cultured from 32/250 (12.8%), 26/28 (92.9%), 2/24(8.3%), cattle, egrets and whistling duck faecal samples, respectively. blaCTX-M gene family was prevalent; blaCTX-M15 (83.3%) predominated over blaCTX-M9 (11.8%). All were susceptible to carbapenems. The majority of isolates were resistant to at least one of the other tested antimicrobials; multidrug resistance was highest in the isolates recovered from egrets. The isolates harboured diverse repositories of other AMR genes (including strB and sul2), integrons (predominantly class 1) and VAGs. The isolates recovered from egrets harboured more AMR genes; eight were unique to these isolates including tetG, gepA, and floR. The prevalent VAGs included hemL and iss; while 14 (including sepA) were unique to certain animal isolates. E. coli serotypes O9:H9, O9:H30 and O9:H4 predominated. An identical phenotypic microarray profile was detected in three isolates from egrets and cattle, indicative of a clonal relationship amongst these isolates. Conclusion: Wild birds and cattle harbour diverse ESBL-producing E. coli populations with potential of inter-species dissemination and virulence. Recommended guidelines to balance public health and habitat conservation should be implemented with continuous surveillance. © 2021, The Author(s).