Search Results

Now showing 1 - 10 of 20
  • Item
    Probiomimetics - Novel Lactobacillus‐Mimicking Microparticles Show Anti‐Inflammatory and Barrier‐Protecting Effects in Gastrointestinal Models
    (Weinheim : Wiley-VCH, 2020) Kuhn, Thomas; Koch, Marcus; Fuhrmann, Gregor
    There is a lack of efficient therapies to treat increasingly prevalent autoimmune diseases, such as inflammatory bowel disease and celiac disease. Membrane vesicles (MVs) isolated from probiotic bacteria have shown tremendous potential for treating intestinal inflammatory diseases. However, possible dilution effects and rapid elimination in the gastrointestinal tract may impair their application. A cell‐free and anti‐inflammatory therapeutic system—probiomimetics—based on MVs of probiotic bacteria (Lactobacillus casei and Lactobacillus plantarum) coupled to the surface of microparticles is developed. The MVs are isolated and characterized for size and protein content. MV morphology is determined using cryoelectron microscopy and is reported for the first time in this study. MVs are nontoxic against macrophage‐like dTHP‐1 and enterocyte‐like Caco‐2 cell lines. Subsequently, the MVs are coupled onto the surface of microparticles according to facile aldehyde‐group functionalization to obtain probiomimetics. A significant reduction in proinflammatory TNF‐α level (by 86%) is observed with probiomimetics but not with native MVs. Moreover, it is demonstrated that probiomimetics have the ability to ameliorate inflammation‐induced loss of intestinal barrier function, indicating their potential for further development into an anti‐inflammatory formulation. These engineered simple probiomimetics that elicit striking anti‐inflammatory effects are a key step toward therapeutic MV translation.
  • Item
    Light-Regulated Angiogenesis via a Phototriggerable VEGF Peptidomimetic
    (Weinheim : Wiley-VCH, 2021) Nair, Roshna V.; Farrukh, Aleeza; del Campo, Aránzazu
    The application of growth factor based therapies in regenerative medicine is limited by the high cost, fast degradation kinetics, and the multiple functions of these molecules in the cell, which requires regulated delivery to minimize side effects. Here a photoactivatable peptidomimetic of the vascular endothelial growth factor (VEGF) that allows the light-controlled presentation of angiogenic signals to endothelial cells embedded in hydrogel matrices is presented. A photoresponsive analog of the 15-mer peptidomimetic Ac-KLTWQELYQLKYKGI-NH2 (abbreviated PQK) is prepared by introducing a 3-(4,5-dimethoxy-2-nitrophenyl)-2-butyl (DMNPB) photoremovable protecting group at the Trp4 residue. This modification inhibits the angiogenic potential of the peptide temporally. Light exposure of PQK modified hydrogels provide instructive cues to embedded endothelial cells and promote angiogenesis at the illuminated sites of the 3D culture, with the possibility of spatial control. PQK modified photoresponsive biomaterials offer an attractive approach for the dosed delivery and spatial control of pro-angiogenic factors to support regulated vascular growth by just using light as an external trigger.
  • Item
    Poly(2-alkyl-2-oxazoline)-Heparin Hydrogels—Expanding the Physicochemical Parameter Space of Biohybrid Materials
    (Weinheim : Wiley-VCH, 2021) Hahn, Dominik; Sonntag, Jannick M.; Lück, Steffen; Maitz, Manfred F.; Freudenberg, Uwe; Jordan, Rainer; Werner, Carsten
    Poly(ethylene glycol) (PEG)-glycosaminoglycan (GAG) hydrogel networks are established as very versatile biomaterials. Herein, the synthetic gel component of the biohybrid materials is systematically varied by combining different poly(2-alkyl-2-oxazolines) (POx) with heparin applying a Michael-type addition crosslinking scheme: POx of gradated hydrophilicity and temperature-responsiveness provides polymer networks of distinctly different stiffness and swelling. Adjusting the mechanical properties and the GAG concentration of the gels to similar values allows for modulating the release of GAG-binding growth factors (VEGF165 and PDGF-BB) by the choice of the POx and its temperature-dependent conformation. Adsorption of fibronectin, growth of fibroblasts, and bacterial adhesion scale with the hydrophobicity of the gel-incorporated POx. In vitro hemocompatibility tests with freshly drawn human whole blood show advantages of POx-based gels compared to the PEG-based reference materials. Biohybrid POx hydrogels can therefore enable biomedical technologies requiring GAG-based materials with customized and switchable physicochemical characteristics. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.
  • Item
    Biocompatible Micron-Scale Silk Fibers Fabricated by Microfluidic Wet Spinning
    (Weinheim : Wiley-VCH, 2021) Lüken, Arne; Geiger, Matthias; Steinbeck, Lea; Joel, Anna-Christin; Lampert, Angelika; Linkhorst, John; Wessling, Matthias
    For successful material deployment in tissue engineering, the material itself, its mechanical properties, and the microscopic geometry of the product are of particular interest. While silk is a widely applied protein-based tissue engineering material with strong mechanical properties, the size and shape of artificially spun silk fibers are limited by existing processes. This study adjusts a microfluidic spinneret to manufacture micron-sized wet-spun fibers with three different materials enabling diverse geometries for tissue engineering applications. The spinneret is direct laser written (DLW) inside a microfluidic polydimethylsiloxane (PDMS) chip using two-photon lithography, applying a novel surface treatment that enables a tight print-channel sealing. Alginate, polyacrylonitrile, and silk fibers with diameters down to 1 µm are spun, while the spinneret geometry controls the shape of the silk fiber, and the spinning process tailors the mechanical property. Cell-cultivation experiments affirm bio-compatibility and showcase an interplay between the cell-sized fibers and cells. The presented spinning process pushes the boundaries of fiber fabrication toward smaller diameters and more complex shapes with increased surface-to-volume ratio and will substantially contribute to future tailored tissue engineering materials for healthcare applications. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo
    (Weinheim : Wiley-VCH, 2021) Aziz, Azaam; Holthof, Joost; Meyer, Sandra; Schmidt, Oliver G.; Medina-Sánchez, Mariana
    The fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms has boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic imaging (PAI), considered a functional technique, has shown to be promising for the visualization of micromotors in deep tissue with high spatiotemporal resolution as it possesses the molecular specificity of optical methods and the penetration depth of ultrasound. However, the precise maneuvering and function's control of medical micromotors, in particular in living organisms, require both anatomical and functional imaging feedback. Therefore, herein, the use of high-frequency ultrasound and PAI is reported to obtain anatomical and molecular information, respectively, of magnetically-driven micromotors in vitro and under ex vivo tissues. Furthermore, the steerability of the micromotors is demonstrated by the action of an external magnetic field into the uterus and bladder of living mice in real-time, being able to discriminate the micromotors’ signal from one of the endogenous chromophores by multispectral analysis. Finally, the successful loading and release of a model cargo by the micromotors toward non-invasive in vivo medical interventions is demonstrated. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Enhancing the Stabilization Potential of Lyophilization for Extracellular Vesicles
    (Weinheim : Wiley-VCH, 2021) Trenkenschuh, Eduard; Richter, Maximilian; Heinrich, Eilien; Koch, Marcus; Fuhrmann, Gregor; Friess, Wolfgang
    Extracellular vesicles (EV) are an emerging technology as immune therapeutics and drug delivery vehicles. However, EVs are usually stored at −80 °C which limits potential clinical applicability. Freeze-drying of EVs striving for long-term stable formulations is therefore studied. The most appropriate formulation parameters are identified in freeze-thawing studies with two different EV types. After a freeze-drying feasibility study, four lyophilized EV formulations are tested for storage stability for up to 6 months. Freeze-thawing studies revealed improved colloidal EV stability in presence of sucrose or potassium phosphate buffer instead of sodium phosphate buffer or phosphate-buffered saline. Less aggregation and/or vesicle fusion occurred at neutral pH compared to slightly acidic or alkaline pH. EVs colloidal stability can be most effectively preserved by addition of low amounts of poloxamer 188. Polyvinyl pyrrolidone failed to preserve EVs upon freeze-drying. Particle size and concentration of EVs are retained over 6 months at 40 °C in lyophilizates containing 10 mm K- or Na-phosphate buffer, 0.02% poloxamer 188, and 5% sucrose. The biological activity of associated beta-glucuronidase is maintained for 1 month, but decreased after 6 months. Here optimized parameters for lyophilization of EVs that contribute to generate long-term stable EV formulations are presented. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    How Much Physical Guidance is Needed to Orient Growing Axons in 3D Hydrogels?
    (Weinheim : Wiley-VCH, 2020) Rose, Jonas C.; Gehlen, David B.; Omidinia-Anarkoli, Abdolrahman; Fölster, Maaike; Haraszti, Tamás; Jaekel, Esther E.; De Laporte, Laura
    Directing cells is essential to organize multi-cellular organisms that are built up from subunits executing specific tasks. This guidance requires a precisely controlled symphony of biochemical, mechanical, and structural signals. While many guiding mechanisms focus on 2D structural patterns or 3D biochemical gradients, injectable material platforms that elucidate how cellular processes are triggered by defined 3D physical guiding cues are still lacking but crucial for the repair of soft tissues. Herein, a recently developed anisotropic injectable hybrid hydrogel (Anisogel) contains rod-shaped microgels that orient in situ by a magnetic field and has propelled studying 3D cell guidance. Here, the Anisogel is used to investigate the dependence of axonal guidance on microgel dimensions, aspect ratio, and distance. While large microgels result in high material anisotropy, they significantly reduce neurite outgrowth and thus the guidance efficiency. Narrow and long microgels enable strong axonal guidance with maximal outgrowth including cell sensing over distances of tens of micrometers in 3D. Moreover, nerve cells decide to orient inside the Anisogel within the first three days, followed by strengthening of the alignment, which goes along with oriented fibronectin deposition. These findings demonstrate the potential of the Anisogel to tune structural and mechanical parameters for specific applications. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Digitally Fabricated and Naturally Augmented In Vitro Tissues
    (Weinheim : Wiley-VCH, 2020) Duarte Campos, Daniela F.; De Laporte, Laura
    Human in vitro tissues are extracorporeal 3D cultures of human cells embedded in biomaterials, commonly hydrogels, which recapitulate the heterogeneous, multiscale, and architectural environment of the human body. Contemporary strategies used in 3D tissue and organ engineering integrate the use of automated digital manufacturing methods, such as 3D printing, bioprinting, and biofabrication. Human tissues and organs, and their intra- and interphysiological interplay, are particularly intricate. For this reason, attentiveness is rising to intersect materials science, medicine, and biology with arts and informatics. This report presents advances in computational modeling of bioink polymerization and its compatibility with bioprinting, the use of digital design and fabrication in the development of fluidic culture devices, and the employment of generative algorithms for modeling the natural and biological augmentation of in vitro tissues. As a future direction, the use of serially linked in vitro tissues as human body-mimicking systems and their application in drug pharmacokinetics and metabolism, disease modeling, and diagnostics are discussed. © 2020 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Yields and Immunomodulatory Effects of Pneumococcal Membrane Vesicles Differ with the Bacterial Growth Phase
    (Weinheim : Wiley-VCH, 2021) Mehanny, Mina; Kroniger, Tobias; Koch, Marcus; Hoppstädter, Jessica; Becher, Dörte; Kiemer, Alexandra K.; Lehr, Claus-Michael; Fuhrmann, Gregor
    Streptococcus pneumoniae infections are a leading cause of death worldwide. Bacterial membrane vesicles (MVs) are promising vaccine candidates because of the antigenic components of their parent microorganisms. Pneumococcal MVs exhibit low toxicity towards several cell lines, but their clinical translation requires a high yield and strong immunogenic effects without compromising immune cell viability. MVs are isolated during either the stationary phase (24 h) or death phase (48 h), and their yields, immunogenicity and cytotoxicity in human primary macrophages and dendritic cells have been investigated. Death-phase vesicles showed higher yields than stationary-phase vesicles. Both vesicle types displayed acceptable compatibility with primary immune cells and several cell lines. Both vesicle types showed comparable uptake and enhanced release of the inflammatory cytokines, tumor necrosis factor and interleukin-6, from human primary immune cells. Proteomic analysis revealed similarities in vesicular immunogenic proteins such as pneumolysin, pneumococcal surface protein A, and IgA1 protease in both vesicle types, but stationary-phase MVs showed significantly lower autolysin levels than death-phase MVs. Although death-phase vesicles produced higher yields, they lacked superiority to stationary-phase vesicles as vaccine candidates owing to their similar antigenic protein cargo and comparable uptake into primary human immune cells.
  • Item
    Controlling Structure with Injectable Biomaterials to Better Mimic Tissue Heterogeneity and Anisotropy
    (Weinheim : Wiley-VCH, 2021) Babu, Susan; Albertino, Filippo; Omidinia-Anarkoli, Abdolrahman; De Laporte, Laura
    Tissue regeneration of sensitive tissues calls for injectable scaffolds, which are minimally invasive and offer minimal damage to the native tissues. However, most of these systems are inherently isotropic and do not mimic the complex hierarchically ordered nature of the native extracellular matrices. This review focuses on the different approaches developed in the past decade to bring in some form of anisotropy to the conventional injectable tissue regenerative matrices. These approaches include introduction of macroporosity, in vivo pattering to present biomolecules in a spatially and temporally controlled manner, availability of aligned domains by means of self-assembly or oriented injectable components, and in vivo bioprinting to obtain structures with features of high resolution that resembles native tissues. Toward the end of the review, different techniques to produce building blocks for the fabrication of heterogeneous injectable scaffolds are discussed. The advantages and shortcomings of each approach are discussed in detail with ideas to improve the functionality and versatility of the building blocks. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH