Search Results

Now showing 1 - 10 of 45
  • Item
    Analysing Interlinked Frequency Dynamics of the Urban Acoustic Environment
    (Basel : MDPI AG, 2022) Haselhoff, Timo; Braun, Tobias; Hornberg, Jonas; Lawrence, Bryce T.; Ahmed, Salman; Gruehn, Dietwald; Moebus, Susanne
    As sustainable metropolitan regions require more densely built-up areas, a comprehensive understanding of the urban acoustic environment (AE) is needed. However, comprehensive datasets of the urban AE and well-established research methods for the AE are scarce. Datasets of audio recordings tend to be large and require a lot of storage space as well as computationally expensive analyses. Thus, knowledge about the long-term urban AE is limited. In recent years, however, these limitations have been steadily overcome, allowing a more comprehensive analysis of the urban AE. In this respect, the objective of this work is to contribute to a better understanding of the time-frequency domain of the urban AE, analysing automatic audio recordings from nine urban settings over ten months. We compute median power spectra as well as normalised spectrograms for all settings. Additionally, we demonstrate the use of frequency correlation matrices (FCMs) as a novel approach to access large audio datasets. Our results show site-dependent patterns in frequency dynamics. Normalised spectrograms reveal that frequency bins with low power hold relevant information and that the AE changes considerably over a year. We demonstrate that this information can be captured by using FCMs, which also unravel communities of interlinked frequency dynamics for all settings.
  • Item
    Impacts of climate change on agro-climatic suitability of major food crops in Ghana
    (San Francisco, California, US : PLOS, 2020) Chemura, Abel; Schauberger, Bernhard; Gornott, Christoph
    Climate change is projected to impact food production stability in many tropical countries through impacts on crop potential. However, without quantitative assessments of where, by how much and to what extent crop production is possible now and under future climatic conditions, efforts to design and implement adaptation strategies under Nationally Determined Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we used extreme gradient boosting, a machine learning approach to model the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agronomically important variables. We then used multi-model future climate projections for the 2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict changes in the suitability range of these crops. We achieved a good model fit in determining suitability classes for all crops (AUC = 0.81–0.87). Precipitation-based factors are suggested as most important in determining crop suitability, though the importance is crop-specific. Under projected climatic conditions, optimal suitability areas will decrease for all crops except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12% under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana has optimal suitability for two crops, 2% for three crops with no area having optimal suitability for all the four crops. Under projected climatic conditions, areas with optimal suitability for two and three crops will decrease by 12% as areas having moderate and marginal conditions for multiple crops increase. We also found that although the distribution of multiple crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suitable for the south while groundnut and sorghum will be more suitable for the northern parts of Ghana under projected climatic conditions.
  • Item
    Climate change and international migration: Exploring the macroeconomic channel
    (San Francisco, California, US : PLOS, 2022) Rikani, Albano; Frieler, Katja; Schewe, Jacob
    International migration patterns, at the global level, can to a large extent be explained through economic factors in origin and destination countries. On the other hand, it has been shown that global climate change is likely to affect economic development over the coming decades. Here, we demonstrate how these future climate impacts on national income levels could alter the global migration landscape. Using an empirically calibrated global migration model, we investigate two separate mechanisms. The first is through destination-country income, which has been shown consistently to have a positive effect on immigration. As countries' income levels relative to each other are projected to change in the future both due to different rates of economic growth and due to different levels of climate change impacts, the relative distribution of immigration across destination countries also changes as a result, all else being equal. Second, emigration rates have been found to have a complex, inverted U-shaped dependence on origin-country income. Given the available migration flow data, it is unclear whether this dependence-found in spatio-temporal panel data-also pertains to changes in a given migration flow over time. If it does, then climate change will additionally affect migration patterns through origin countries' emigration rates, as the relative and absolute positions of countries on the migration "hump" change. We illustrate these different possibilities, and the corresponding effects of 3°C global warming (above pre-industrial) on global migration patterns, using climate model projections and two different methods for estimating climate change effects on macroeconomic development.
  • Item
    Key Food Hygiene Behaviors to Reduce Microbial Contamination of Complementary Foods in Rural Bangladesh
    (Northbrook, Ill. : American Soc. of Tropical Medicine and Hygiene, 2022) Müller-Hauser, Anna A.; Sobhan, Shafinaz; Huda, Tarique Md. Nurul; Waid, Jillian L.; Wendt, Amanda S.; Islam, Mohammad Aminul; Rahman, Mahbubur; Gabrysch, Sabine
    Microbial contamination of complementary foods puts young children at risk of developing intestinal infections and could be reduced by improved handwashing and food hygiene practices. We aimed to identify which promoted food hygiene practices are associated with reduced complementary food contamination in a rural population in Bangladesh. We collected cross-sectional data on reported and observed maternal food hygiene behaviors and measured Escherichia coli counts as an indicator of microbial contamination in complementary food samples from 342 children of women enrolled in the Food and Agricultural Approaches to Reducing Malnutrition trial in Sylhet, Bangladesh. We used multivariable logistic regression to examine associations of food hygiene behaviors with food contamination. Approximately 46%of complementary food samples had detectable levels of Escherichia coli. Handwashing with soap at critical times and fresh preparation of food before feeding were strongly associated with reduced odds of food sample contamination (odds ratio [OR]: 0.8, 95% confidence interval [CI]: 0.6-0.9 and OR: 0.3, 95% CI: 0.1-0.7, respectively); in contrast, there was no or only weak evidence that reheating of stored food, safe food storage, and cleanliness of feeding utensils reduced contamination. Reduction in food contamination could be more than halved only when several food hygiene behaviors were practiced in combination. In conclusion, single food hygiene practices showed limited potential and a combined practice of multiple food hygiene behaviors may be needed to achieve a substantial reduction of complementary food contamination.
  • Item
    Typology of coastal urban vulnerability under rapid urbanization
    (San Francisco, California, US : PLOS, 2020) Sterze, Till; Lüdeke, Matthias K.B.; Walther, Carsten; Kok, Marcel T.; Sietz, Diana; Lucas, Paul L.
    Coastal areas are urbanizing at unprecedented rates, particularly in low- and middle-income countries. Combinations of long-standing and emerging problems in these urban areas generate vulnerability for human well-being and ecosystems alike. This baseline study provides a spatially explicit global systematization of these problems into typical urban vulnerability profiles for the year 2000 using largely sub-national data. Using 11 indicator datasets for urban expansion, urban population growth, marginalization of poor populations, government effectiveness, exposures and damages to climate-related extreme events, low-lying settlement, and wetlands prevalence, a cluster analysis reveals a global typology of seven clearly distinguishable clusters, or urban profiles of vulnerability. Each profile is characterized by a specific data-value combination of indicators representing mechanisms that generate vulnerability. Using 21 studies for testing the plausibility, we identify seven key profile-based vulnerabilities for urban populations, which are relevant in the context of global urbanization, expansion, and climate change. We show which urban coasts are similar in this regard. Sensitivity and exposure to extreme climate-related events, and government effectiveness, are the most important factors for the huge asymmetries of vulnerability between profiles. Against the background of underlying global trends we propose entry points for profile-based vulnerability reduction. The study provides a baseline for further pattern analysis in the rapidly urbanizing coastal fringe as data availability increases. We propose to explore socio-ecologically similar coastal urban areas as a basis for sharing experience and vulnerability-reducing measures among them.
  • Item
    The environmental footprint of health care: a global assessment
    (Amsterdam : Elsevier, 2020) Lenzen, Manfred; Malik, Arunima; Li, Mengyu; Fry, Jacob; Weisz, Helga; Pichler, Peter-Paul; Chaves, Leonardo Suveges Moreira; Capon, Anthony; Pencheon, David
    Background: Health-care services are necessary for sustaining and improving human wellbeing, yet they have an environmental footprint that contributes to environment-related threats to human health. Previous studies have quantified the carbon emissions resulting from health care at a global level. We aimed to provide a global assessment of the wide-ranging environmental impacts of this sector. Methods: In this multiregional input-output analysis, we evaluated the contribution of health-care sectors in driving environmental damage that in turn puts human health at risk. Using a global supply-chain database containing detailed information on health-care sectors, we quantified the direct and indirect supply-chain environmental damage driven by the demand for health care. We focused on seven environmental stressors with known adverse feedback cycles: greenhouse gas emissions, particulate matter, air pollutants (nitrogen oxides and sulphur dioxide), malaria risk, reactive nitrogen in water, and scarce water use. Findings: Health care causes global environmental impacts that, depending on which indicator is considered, range between 1% and 5% of total global impacts, and are more than 5% for some national impacts. Interpretation: Enhancing health-care expenditure to mitigate negative health effects of environmental damage is often promoted by health-care practitioners. However, global supply chains that feed into the enhanced activity of health-care sectors in turn initiate adverse feedback cycles by increasing the environmental impact of health care, thus counteracting the mission of health care. Funding: Australian Research Council, National eResearch Collaboration Tools and Resources project. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  • Item
    Photodynamic Opening of the Blood–Brain Barrier and the Meningeal Lymphatic System: The New Niche in Immunotherapy for Brain Tumors
    (Basel : MDPI, 2022) Semyachkina-Glushkovskaya, Oxana; Terskov, Andrey; Khorovodov, Alexander; Telnova, Valeria; Blokhina, Inna; Saranceva, Elena; Kurths, Jürgen
    Photodynamic therapy (PDT) is a promising add-on therapy to the current standard of care for patients with glioblastoma (GBM). The traditional explanation of the anti-cancer PDT effects involves the PDT-induced generation of a singlet oxygen in the GBM cells, which causes tumor cell death and microvasculature collapse. Recently, new vascular mechanisms of PDT associated with opening of the blood–brain barrier (OBBB) and the activation of functions of the meningeal lymphatic vessels have been discovered. In this review, we highlight the emerging trends and future promises of immunotherapy for brain tumors and discuss PDT-OBBB as a new niche and an important informative platform for the development of innovative pharmacological strategies for the modulation of brain tumor immunity and the improvement of immunotherapy for GBM.
  • Item
    Ocean warming and acidification may drag down the commercial Arctic cod fishery by 2100
    (San Francisco, California, US : PLOS, 2020) Hänsel, Martin C.; Schmidt, Jörn O.; Stiasny, Martina H.; Stöven, Max T.; Voss, Rudi; Quaas, Martin F.
    The Arctic Ocean is an early warning system for indicators and effects of climate change. We use a novel combination of experimental and time-series data on effects of ocean warming and acidification on the commercially important Northeast Arctic cod (Gadus morhua) to incorporate these physiological processes into the recruitment model of the fish population. By running an ecological-economic optimization model, we investigate how the interaction of ocean warming, acidification and fishing pressure affects the sustainability of the fishery in terms of ecological, economic, social and consumer-related indicators, ranging from present day conditions up to future climate change scenarios. We find that near-term climate change will benefit the fishery, but under likely future warming and acidification this large fishery is at risk of collapse by the end of the century, even with the best adaptation effort in terms of reduced fishing pressure.
  • Item
    Maternal mycotoxin exposure and adverse pregnancy outcomes: a systematic review
    (Berlin ; Heidelberg : Springer, 2020) Kyei, Nicholas N.A.; Boakye, Daniel; Gabrysch, Sabine
    Mycotoxin exposure from food occurs globally but is more common in hot humid environments, especially in low-income settings, and might affect pregnancy outcomes. This study aimed to synthesize the evidence from epidemiological studies on the relationship between maternal or fetal exposure to different mycotoxins and the occurrence of adverse pregnancy outcomes. Multiple databases were systematically searched up to December 2018 to identify studies that assessed the association between mycotoxin exposure in pregnant women or fetuses and at least one pregnancy outcome. Studies were appraised and results were synthesized using standard methods for conducting systematic reviews. This review identified and included 17 relevant studies. There is some evidence to suggest that exposure to various Aspergillus mycotoxins (e.g., aflatoxin) during pregnancy may impair intrauterine fetal growth and promote neonatal jaundice. Findings were inconclusive concerning the influence of aflatoxin exposure on perinatal death and preterm birth. Only two studies assessed effects of maternal exposure to Fusarium mycotoxins (e.g., fumonisin) on adverse pregnancy outcomes. These studies found that maternal fumonisin exposure may be associated with hypertensive emergencies in pregnancy and with neural tube defects. Studies using grain farming and weather conditions as a proxy measure for mycotoxin exposure found that such exposure was associated with an increased risk of preterm birth and late-term miscarriage. In conclusion, there is already some evidence to suggest that exposure to mycotoxins during pregnancy may have detrimental effects on pregnancy outcomes. However, given the limited number of studies, especially on effects of Fusarium mycotoxins, more studies are needed for a more comprehensive understanding of the effects of different mycotoxins on maternal and fetal health and to guide public health policies and interventions. © 2020, The Author(s).
  • Item
    Articulating the effect of food systems innovation on the Sustainable Development Goals
    (Amsterdam : Elsevier, 2021) Herrero, Mario; Thornton, Philip K.; Mason-D'Croz, Daniel; Palmer, Jeda; Bodirsky, Benjamin L.; Pradhan, Prajal; Barrett, Christopher B.; Benton, Tim G.; Hall, Andrew; Pikaar, Ilje; Bogard, Jessica R.; Bonnett, Graham D.; Bryan, Brett A.; Campbell, Bruce M.; Christensen, Svend; Clark, Michael; Fanzo, Jessica; Godde, Cecile M.; Jarvis, Andy; Loboguerrero, Ana Maria; Mathys, Alexander; McIntyre, C. Lynne; Naylor, Rosamond L.; Nelson, Rebecca; Obersteiner, Michael; Parodi, Alejandro; Popp, Alexander; Ricketts, Katie; Smith, Pete; Valin, Hugo; Vermeulen, Sonja J.; Vervoort, Joost; van Wijk, Mark; van Zanten, Hannah HE; West, Paul C.; Wood, Stephen A.; Rockström, Johan
    Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level.