Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

The Impact of AlN Templates on Strain Relaxation Mechanisms during the MOVPE Growth of UVB-LED Structures

2020, Knauer, Arne, Mogilatenko, Anna, Weinrich, Jonas, Hagedorn, Sylvia, Walde, Sebastian, Kolbe, Tim, Cancellara, Leonardo, Weyers, Markus

Strain relaxation mechanisms in AlGaN based light emitting diodes emitting in the ultraviolet B spectral range (UVB-LEDs) grown on different AlN/sapphire templates are analyzed by combining in situ reflectivity and curvature data with transmission electron microscopy. In particular, the impact of dislocation density, surface morphology, and lattice constant of the AlN/sapphire templates is studied. For nonannealed AlN/templates with threading dislocation densities (TDDs) of 4 × 109 and 3 × 109 cm−2 and different surface morphologies strain relaxation takes place mostly by conventional ways, such as inclination of threading dislocation lines and formation of horizontal dislocation bands. In contrast, a TDD reduction down to 1 × 109 cm−2 as well as a reduction of the lattice constant of high temperature annealed AlN template leads to drastic changes in the structure of subsequently grown AlGaN layers, e.g., to transformation to helical dislocations and enhanced surface enlargement by formation of macrofacets. For the growth of strongly compressively strained AlGaN layers for UVB-LEDs the relaxation mechanism is strongly influenced by the absolute values of TDD and the lattice constant of the AlN templates and is less influenced by their surface morphology.

Loading...
Thumbnail Image
Item

Subsequent treatment of leafy vegetables with low doses of UVB-radiation does not provoke cytotoxicity, genotoxicity, or oxidative stress in a human liver cell model

2021, Wiesner-Reinhold, Melanie, Dutra Gomes, João Victor, Herz, Corinna, Tran, Hoai Thi Thu, Baldermann, Susanne, Neugart, Susanne, Filler, Thomas, Glaab, Johannes, Einfeldt, Sven, Schreiner, Monika, Lamy, Evelyn

Ultraviolet B (UVB) radiation in low but ecological-relevant doses acts as a regulator in the plant's secondary metabolism. This study investigates the effect of UVB radiation from light-emitting diodes (LEDs) [peak wavelength of (290 ± 2) nm] on the biosynthesis of health-promoting secondary plant metabolites (carotenoids, phenolic compounds, and glucosinolates) of green and red leafy vegetables of Lactuca sativa, Brassica campestris, and Brassica juncea followed by evaluation of potential adverse effects in a human liver cell model. UVB radiation led to a significant increase in individual secondary plant metabolites, especially of phenolic compounds and glucosinolates, e.g. alkenyl glucosinolate content. Kaempferol und quercetin glycoside concentrations were also significantly increased compared to untreated plants. The plant extracts from Lactuca sativa, Brassica campestris, and Brassica juncea were used to assess cytotoxicity (WST-1 assay and trypan blue staining), genotoxicity (Comet assay), and production of reactive oxygen species (EPR) using metabolically competent human-derived HepG2 liver cells. No adverse effects in terms of cytotoxicity, genotoxicity, or oxidative stress were detected in an extract concentration ranging from 3.125 to 100 μg ml−1. Notably, only at very high concentrations were marginal cytostatic effects observed in extracts from UVB-treated as well as untreated plants. In conclusion, the application of UVB radiation from LEDs changes structure-specific health-promoting secondary plant metabolites without damaging the plants. The treatment did not result in adverse effects at the human cell level. Based on these findings, UVB LEDs are a future alternative, promising light source to replace currently commonly used high-pressure sodium lamps in greenhouses.