Search Results

Now showing 1 - 10 of 47
  • Item
    Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
    (Weinheim : Wiley-VCH, 2022) Wang, Lei; Torkamanzadeh, Mohammad; Majed, Ahmad; Zhang, Yuan; Wang, Qingsong; Breitung, Ben; Feng, Guang; Naguib, Michael; Presser, Volker
    Electrochemical ion separation is a promising technology to recover valuable ionic species from water. Pseudocapacitive materials, especially 2D materials, are up-and-coming electrodes for electrochemical ion separation. For implementation, it is essential to understand the interplay of the intrinsic preference of a specific ion (by charge/size), kinetic ion preference (by mobility), and crystal structure changes. Ti3C2Tz MXene is chosen here to investigate its selective behavior toward alkali and alkaline earth cations. Utilizing an online inductively coupled plasma system, it is found that Ti3C2Tz shows a time-dependent selectivity feature. In the early stage of charging (up to about 50 min), K+ is preferred, while ultimately Ca2+ and Mg2+ uptake dominate; this unique phenomenon is related to dehydration energy barriers and the ion exchange effect between divalent and monovalent cations. Given the wide variety of MXenes, this work opens the door to a new avenue where selective ion-separation with MXene can be further engineered and optimized.
  • Item
    Mechanically Stable, Binder‐Free, and Free‐Standing Vanadium Trioxide/Carbon Hybrid Fiber Electrodes for Lithium‐Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Bornamehr, Behnoosh; Gallei, Markus; Husmann, Samantha; Presser, Volker
    Binder is a crucial component in present-day battery electrodes but commonly contains fluorine and requires coating processing using organic (often toxic) solvents. Preparing binder-free electrodes is an attractive strategy to make battery electrode production and its end-of-use waste greener and safer. Herein, electrospinning is employed to prepare binder-free and self-standing electrodes. Such electrodes often suffer from low flexibility, and the correlation between performance and flexibility is usually overlooked. Processing parameters affect the mechanical properties of the electrodes, and for the first time it is reported that mechanical flexibility directly influences the electrochemical performance of the electrode. The importance is highlighted when processing parameters advantageous to powder materials, such as a higher heat treatment temperature, harm self-standing electrodes due to deterioration of fiber flexibility. Other strategies, such as conductive carbon addition, can be employed to improve the cell performance, but their effect on the mechanical properties of the electrodes must be considered. Rapid heat treatment achieves self-standing V2O3 with a capacity of 250 mAh g−1 at 250 mA g−1 and 390 mAh g−1 at 10 mA g−1
  • Item
    Light-Regulated Angiogenesis via a Phototriggerable VEGF Peptidomimetic
    (Weinheim : Wiley-VCH, 2021) Nair, Roshna V.; Farrukh, Aleeza; del Campo, Aránzazu
    The application of growth factor based therapies in regenerative medicine is limited by the high cost, fast degradation kinetics, and the multiple functions of these molecules in the cell, which requires regulated delivery to minimize side effects. Here a photoactivatable peptidomimetic of the vascular endothelial growth factor (VEGF) that allows the light-controlled presentation of angiogenic signals to endothelial cells embedded in hydrogel matrices is presented. A photoresponsive analog of the 15-mer peptidomimetic Ac-KLTWQELYQLKYKGI-NH2 (abbreviated PQK) is prepared by introducing a 3-(4,5-dimethoxy-2-nitrophenyl)-2-butyl (DMNPB) photoremovable protecting group at the Trp4 residue. This modification inhibits the angiogenic potential of the peptide temporally. Light exposure of PQK modified hydrogels provide instructive cues to embedded endothelial cells and promote angiogenesis at the illuminated sites of the 3D culture, with the possibility of spatial control. PQK modified photoresponsive biomaterials offer an attractive approach for the dosed delivery and spatial control of pro-angiogenic factors to support regulated vascular growth by just using light as an external trigger.
  • Item
    A New Family of Layered Metal-Organic Semiconductors: Cu/V-Organophosphonates
    (Weinheim : Wiley-VCH, 2023) Tholen, Patrik; Wagner, Lukas; Ruthes, Jean G. A.; Siemensmeyer, Konrad; Beglau, Thi Hai Yen; Muth, Dominik; Zorlu, Yunus; Okutan, Mustafa; Goldschmidt, Jan Christoph; Janiak, Christoph; Presser, Volker; Yavuzçetin, Özgür; Yücesan, Gündoğ
    Herein, we report the design and synthesis of a layered redox-active, antiferromagnetic metal organic semiconductor crystals with the chemical formula [Cu(H2O)2V(µ-O)(PPA)2] (where PPA is phenylphosphonate). The crystal structure of [Cu(H2O)2V(µ-O)(PPA)2] shows that the metal phosphonate layers are separated by phenyl groups of the phenyl phosphonate linker. Tauc plotting of diffuse reflectance spectra indicates that [Cu(H2O)2V(µ-O)(PPA)2] has an indirect band gap of 2.19 eV. Photoluminescence (PL) spectra indicate a complex landscape of energy states with PL peaks at 1.8 and 2.2 eV. [Cu(H2O)2V(µ-O)(PPA)2] has estimated hybrid ionic and electronic conductivity values between 0.13 and 0.6 S m−1. Temperature-dependent magnetization measurements show that [Cu(H2O)2V(µ-O)(PPA)2] exhibits short range antiferromagnetic order between Cu(II) and V(IV) ions. [Cu(H2O)2V(µ-O)(PPA)2] is also photoluminescent with photoluminescence quantum yield of 0.02%. [Cu(H2O)2V(µ-O)(PPA)2] shows high electrochemical, and thermal stability.
  • Item
    When Ultimate Adhesive Mechanism Meets Ultimate Anti‐Fouling Surfaces - Polydopamine Versus SLIPS: Which One Prevails?
    (Weinheim : Wiley-VCH, 2020) Prieto-López, Lizbeth Ofelia; Herbeck-Engel, Petra; Yang, Li; Wu, Qian; Li, Juntang; Cui, Jiaxi
    What happens when the extremely adhesive and versatile chemistry of polydopamine (PDA) is in contact with the extremely slippery surfaces known as slippery liquid‐infused porous substrates (SLIPS)? Inspired by the pitcher plant, SLIPS possess excellent repellence against a variety of complex liquids and have been proposed as promising antifouling surfaces because of their successful performance even in marine environments. In the counterpart, inspired by the adhesive proteins enabling the strong adhesion of mussels to multiple substrates, PDA has been extensively studied for its ability to adhere on nearly every type of substrate. The interaction between various SLIPS systems and the highly fouling medium from the oxidative polymerization of dopamine is explored here. A PDA coating is observed on all the SLIPS evaluated, modifying their hydrophobicity in most cases. In‐depth study of silicone‐based SLIPS shows that hydrophobicity of PDA coated SLIPS partially recovers with time due to percolation of the lubricant through the coating. “Strongly” bound PDA species are attributed to the formation of dopamine‐polydimethylsiloxane species on the crosslinked matrix, rendering a coating that withstands repeated washing steps in various solvents including water, hexane, and toluene. The results not only satisfy scientific curiosity but also imply a strategy to modify/bond SLIPS.
  • Item
    Enhancing the Stabilization Potential of Lyophilization for Extracellular Vesicles
    (Weinheim : Wiley-VCH, 2021) Trenkenschuh, Eduard; Richter, Maximilian; Heinrich, Eilien; Koch, Marcus; Fuhrmann, Gregor; Friess, Wolfgang
    Extracellular vesicles (EV) are an emerging technology as immune therapeutics and drug delivery vehicles. However, EVs are usually stored at −80 °C which limits potential clinical applicability. Freeze-drying of EVs striving for long-term stable formulations is therefore studied. The most appropriate formulation parameters are identified in freeze-thawing studies with two different EV types. After a freeze-drying feasibility study, four lyophilized EV formulations are tested for storage stability for up to 6 months. Freeze-thawing studies revealed improved colloidal EV stability in presence of sucrose or potassium phosphate buffer instead of sodium phosphate buffer or phosphate-buffered saline. Less aggregation and/or vesicle fusion occurred at neutral pH compared to slightly acidic or alkaline pH. EVs colloidal stability can be most effectively preserved by addition of low amounts of poloxamer 188. Polyvinyl pyrrolidone failed to preserve EVs upon freeze-drying. Particle size and concentration of EVs are retained over 6 months at 40 °C in lyophilizates containing 10 mm K- or Na-phosphate buffer, 0.02% poloxamer 188, and 5% sucrose. The biological activity of associated beta-glucuronidase is maintained for 1 month, but decreased after 6 months. Here optimized parameters for lyophilization of EVs that contribute to generate long-term stable EV formulations are presented. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
  • Item
    Bending as Key Mechanism in the Tactile Perception of Fibrillar Surfaces
    (Weinheim : Wiley-VCH, 2021) Gedsun, Angelika; Sahli, Riad; Meng, Xing; Hensel, René; Bennewitz, Roland
    The touching of fibrillar surfaces elicits a broad range of affective reactions, which range from the adverse stinginess of a stiff bristle brush to the pleasant feel of velvet. To study the tactile perception of model fibrillar surfaces, a unique set of samples carrying dense, regular arrays of cylindrical microfibrils with high aspect ratio made from different elastomer materials have been created. Fibril length and material compliance are varied independently such that their respective influence on tactile perception can be elucidated. This work finds that the tactile perception of similarity between samples is dominated by bending of the fibrils under sliding touch. The results demonstrate that variations of material stiffness and of surface structure are not necessarily perceived independently by touch. In the case of fibrillar elastomer surfaces, it is rather the ratio of fibril length and storage modulus which determines fibril bending and becomes the dominant tactile dimension. Visual access to the sample during tactile exploration improves the tactile perception of fibril bendability. Experiments with colored samples show a distraction by color in participants’ decisions regarding tactile similarity only for yellow samples of outstanding brightness.
  • Item
    Increasing Antibacterial Efficiency of Cu Surfaces by targeted Surface Functionalization via Ultrashort Pulsed Direct Laser Interference Patterning
    (Weinheim : Wiley-VCH, 2020) Müller, Daniel W.; Lößlein, Sarah; Terriac, Emmanuel; Brix, Kristina; Siems, Katharina; Moeller, Ralf; Kautenburger, Ralf; Mücklich, Frank
    Copper (Cu) exhibits great potential for application in the design of antimicrobial contact surfaces aiming to reduce pathogenic contamination in public areas as well as clinically critical environments. However, current application perspectives rely purely on the toxic effect of emitted Cu ions, without considering influences on the interaction of pathogenic microorganisms with the surface to enhance antimicrobial efficiency. In this study, it is investigated on how antibacterial properties of Cu surfaces against Escherichia coli can be increased by tailored functionalization of the substrate surface by means of ultrashort pulsed direct laser interference patterning (USP-DLIP). Surface patterns in the scale range of single bacteria cells are fabricated to purposefully increase bacteria/surface contact area, while parallel modification of the surface chemistry allows to involve the aspect of surface wettability into bacterial attachment and the resulting antibacterial effectivity. The results exhibit a delicate interplay between bacterial adhesion and the expression of antibacterial properties, where a reduction of bacterial cell viability of up to 15-fold can be achieved for E. coli on USP-DLIP surfaces in comparison to smooth Cu surfaces. Thereby, it can be shown how the antimicrobial properties of copper surfaces can be additionally enhanced by targeted surface functionalization. © 2020 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH
  • Item
    Hybrid Dielectric Films of Inkjet-Printable Core-Shell Nanoparticles
    (Weinheim : Wiley-VCH, 2021) Buchheit, Roman; Kuttich, Björn; González-García, Lola; Kraus, Tobias
    A new type of hybrid core-shell nanoparticle dielectric that is suitable for inkjet printing is introduced. Gold cores (dcore  ≈ 4.5 nm diameter) are covalently grafted with thiol-terminated polystyrene (Mn  = 11000 Da and Mn  = 5000 Da) and used as inks to spin-coat and inkjet-print dielectric films. The dielectric layers have metal volume fractions of 5 to 21 vol% with either random or face-centered-cubic structures depending on the polymer length and grafting density. Films with 21 vol% metal have dielectric constants of 50@1 Hz. Structural and electrical characterization using transmission electron microscopy, small-angle X-ray scattering, and impedance spectroscopy indicates that classical random capacitor-resistor network models partially describe this hybrid material but fail at high metal fractions, where the covalently attached shell prevents percolation and ensures high dielectric constants without the risk of dielectric breakdown. A comparison of disordered to ordered films indicates that the network structure affects dielectric properties less than the metal content. The applicability of the new dielectric material is demonstrated by formulating inkjet inks and printing devices. An inkjet-printed capacitor with an area of 0.79 mm2 and a 17 nm thick dielectric had a capacitance of 2.2±0.1 nF@1 kHz .
  • Item
    High‐Entropy Sulfides as Electrode Materials for Li‐Ion Batteries
    (Weinheim : Wiley-VCH, 2022) Lin, Ling; Wang, Kai; Sarkar, Abhishek; Njel, Christian; Karkera, Guruprakash; Wang, Qingsong; Azmi, Raheleh; Fichtner, Maximilian; Hahn, Horst; Schweidler, Simon; Breitung, Ben
    High-entropy sulfides (HESs) containing 5 equiatomic transition metals (M), with different M:S ratios, are prepared by a facile one-step mechanochemical approach. Two new types of single-phase HESs with pyrite (Pa-3) and orthorhombic (Pnma) structures are obtained and demonstrate a homogeneously mixed solid solution. The straightforward synthesis method can easily tune the desired metal to sulfur ratio for HESs with different stoichiometries, by utilizing the respective metal sulfides, even pure metals, and sulfur as precursor chemicals. The structural details and solid solution nature of HESs are studied by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma optical emission spectroscopy, and Mössbauer spectroscopy. Since transition metal sulfides are a very versatile material class, here the application of HESs is presented as electrode materials for reversible electrochemical energy storage, in which the HESs show high specific capacities and excellent rate capabilities in secondary Li-ion batteries.