Search Results

Now showing 1 - 8 of 8
  • Item
    Imperceptible Supercapacitors with High Area-Specific Capacitance
    (Weinheim : Wiley-VCH, 2021) Ge, Jin; Zhu, Minshen; Eisner, Eric; Yin, Yin; Dong, Haiyun; Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Zhu, Feng; Ma, Libo; Schmidt, Oliver G.
    Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm—including substrate, electrode, and electrolyte—and an area-specific capacitance of 36 mF cm−2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.
  • Item
    Modeling Photodetection at the Graphene/Ag2S Interface
    (Weinheim : Wiley-VCH, 2021) Spirito, Davide; Martín-García, Beatriz; Mišeikis, Vaidotas; Coletti, Camilla; Bonaccorso, Francesco; Krahne, Roman
    Mixed-dimensional systems host interesting phenomena that involve electron and ion transport along or across the interface, with promising applications in optoelectronic and electrochemical devices. Herein, a heterosystem consisting of a graphene monolayer with a colloidal Ag2S nanocrystal film atop, in which both ions and electrons are involved in photoelectrical effects, is studied. An investigation of the transport at the interface in different configurations by using a phototransistor configuration with graphene as a charge-transport layer and semiconductor nanocrystals as a light-sensitive layer is performed. The key feature of charge transfer is investigated as a function of gate voltage, frequency, and incident light power. A simple analytical model of the photoresponse is developed, to gain information on the device operation, revealing that the nanocrystals transfer electrons to graphene in the dark, but the opposite process occurs upon illumination. A frequency-dependence analysis suggests a fractal interface between the two materials. This interface can be modified using solid-state electrochemical reactions, leading to the formation of metallic Ag particles, which affect the graphene properties by additional doping, while keeping the photoresponse. Overall, these results provide analytical tools and guidelines for the evaluation of coupled electron/ion transport in hybrid systems.
  • Item
    Persistent peri-Heptacene: Synthesis and In Situ Characterization
    (Weinheim : Wiley-VCH, 2021) Ajayakumar, M.R.; Ma, Ji; Lucotti, Andrea; Schellhammer, Karl Sebastian; Serra, Gianluca; Dmitrieva, Evgenia; Rosenkranz, Marco; Komber, Hartmut; Liu, Junzhi; Ortmann, Frank; Tommasini, Matteo; Feng, Xinliang
    n-peri-Acenes (n-PAs) have gained interest as model systems of zigzag-edged graphene nanoribbons for potential applications in nanoelectronics and spintronics. However, the synthesis of n-PAs larger than peri-tetracene remains challenging because of their intrinsic open-shell character and high reactivity. Presented here is the synthesis of a hitherto unknown n-PA, that is, peri-heptacene (7-PA), in which the reactive zigzag edges are kinetically protected with eight 4-tBu-C6H4 groups. The formation of 7-PA is validated by high-resolution mass spectrometry and in situ FT-Raman spectroscopy. 7-PA displays a narrow optical energy gap of 1.01 eV and exhibits persistent stability (t1/2≈25 min) under inert conditions. Moreover, electron-spin resonance measurements and theoretical studies reveal that 7-PA exhibits an open-shell feature and a significant tetraradical character. This strategy could be considered a modular approach for the construction of next-generation (3 N+1)-PAs (where N≥3). © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    A Two-Dimensional Polyimide-Graphene Heterostructure with Ultra-fast Interlayer Charge Transfer
    (Weinheim : Wiley-VCH, 2021) Liu, Kejun; Li, Jiang; Qi, Haoyuan; Hambsch, Mike; Rawle, Jonathan; Vázquez, Adrián Romaní; Nia, Ali Shaygan; Pashkin, Alexej; Schneider, Harald; Polozij, Mirosllav; Heine, Thomas; Helm, Manfred; Mannsfeld, Stefan C.B.; Kaiser, Ute; Dong, Renhao; Feng, Xinliang
    Two-dimensional polymers (2DPs) are a class of atomically/molecularly thin crystalline organic 2D materials. They are intriguing candidates for the development of unprecedented organic–inorganic 2D van der Waals heterostructures (vdWHs) with exotic physicochemical properties. In this work, we demonstrate the on-water surface synthesis of large-area (cm2), monolayer 2D polyimide (2DPI) with 3.1-nm lattice. Such 2DPI comprises metal-free porphyrin and perylene units linked by imide bonds. We further achieve a scalable synthesis of 2DPI-graphene (2DPI-G) vdWHs via a face-to-face co-assembly of graphene and 2DPI on the water surface. Remarkably, femtosecond transient absorption spectroscopy reveals an ultra-fast interlayer charge transfer (ca. 60 fs) in the resultant 2DPI-G vdWH upon protonation by acid, which is equivalent to that of the fastest reports among inorganic 2D vdWHs. Such large interlayer electronic coupling is ascribed to the interlayer cation–π interaction between 2DP and graphene. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    High-Quality Graphene Using Boudouard Reaction
    (Weinheim : Wiley-VCH, 2022) Grebenko, Artem K.; Krasnikov, Dmitry V.; Bubis, Anton V.; Stolyarov, Vasily S.; Vyalikh, Denis V.; Makarova, Anna A.; Fedorov, Alexander; Aitkulova, Aisuluu; Alekseeva, Alena A.; Gilshtein, Evgeniia; Bedran, Zakhar; Shmakov, Alexander N.; Alyabyeva, Liudmila; Mozhchil, Rais N.; Ionov, Andrey M.; Gorshunov, Boris P.; Laasonen, Kari; Podzorov, Vitaly; Nasibulin, Albert G.
    Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO2 mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals. Unique features of the Boudouard reaction coupled with CO-driven catalyst engineering ensure not only suppression of the second layer growth but also provide a simple and reliable technique for surface cleaning. Aside from being a novel carbon source, carbon monoxide ensures peculiar modification of catalyst and in general opens avenues for breakthrough graphene-catalyst composite production.
  • Item
    On the Catalytic Activity of Sn Monomers and Dimers at Graphene Edges and the Synchronized Edge Dependence of Diffusing Atoms in Sn Dimers
    (Weinheim : Wiley-VCH, 2021) Yang, Xiaoqin; Ta, Huy Q.; Hu, Huimin; Liu, Shuyuan; Liu, Yu; Bachmatiuk, Alicja; Luo, Jinping; Liu, Lijun; Choi, Jin-Ho; Rummeli, Mark H.
    In this study, in situ transmission electron microscopy is performed to study the interaction between single (monomer) and paired (dimer) Sn atoms at graphene edges. The results reveal that a single Sn atom can catalyze both the growth and etching of graphene by the addition and removal of C atoms respectively. Additionally, the frequencies of the energetically favorable configurations of an Sn atom at a graphene edge, calculated using density functional theory calculations, are compared with experimental observations and are found to be in good agreement. The remarkable dynamic processes of binary atoms (dimers) are also investigated and is the first such study to the best of the knowledge. Dimer diffusion along the graphene edges depends on the graphene edge termination. Atom pairs (dimers) involving an armchair configuration tend to diffuse with a synchronized shuffling (step-wise shift) action, while dimer diffusion at zigzag edge terminations show a strong propensity to collapse the dimer with each atom diffusing in opposite directions (monomer formation). Moreover, the data reveals the role of C feedstock availability on the choice a single Sn atom makes in terms of graphene growth or etching. This study advances the understanding single atom catalytic activity at graphene edges. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH
  • Item
    Exceptionally High Blocking Temperature of 17 K in a Surface-Supported Molecular Magnet
    (Weinheim : Wiley-VCH, 2021) Paschke, Fabian; Birk, Tobias; Enenkel, Vivien; Liu, Fupin; Romankov, Vladyslav; Dreiser, Jan; Popov, Alexey A.; Fonin, Mikhail
    Single-molecule magnets (SMMs) are among the most promising building blocks for future magnetic data storage or quantum computing applications, owing to magnetic bistability and long magnetic relaxation times. The practical device integration requires realization of 2D surface assemblies of SMMs, where each magnetic unit shows magnetic relaxation being sufficiently slow at application-relevant temperatures. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, it is shown that sub-monolayers of Dy2 @C80 (CH2 Ph) dimetallofullerenes prepared on graphene by electrospray deposition exhibit magnetic behavior fully comparable to that of the bulk. Magnetic hysteresis and relaxation time measurements show that the magnetic moment remains stable for 100 s at 17 K, marking the blocking temperature TB(100) , being not only in excellent agreement with that of the bulk sample but also representing by far the highest one detected for a surface-supported single-molecule magnet. The reported findings give a boost to the efforts to stabilize and address the spin degree of freedom in molecular magnets aiming at the realization of SMM-based spintronic units.
  • Item
    Large-Area Single-Crystal Graphene via Self-Organization at the Macroscale
    (Weinheim : Wiley-VCH, 2020) Ta, Huy Quang; Bachmatiuk, Alicja; Mendes, Rafael Gregorio; Perello, David J.; Zhao, Liang; Trzebicka, Barbara; Gemming, Thomas; Rotkin, Slava V.; Rümmeli, Mark H.
    In 1665 Christiaan Huygens first noticed how two pendulums, regardless of their initial state, would synchronize. It is now known that the universe is full of complex self-organizing systems, from neural networks to correlated materials. Here, graphene flakes, nucleated over a polycrystalline graphene film, synchronize during growth so as to ultimately yield a common crystal orientation at the macroscale. Strain and diffusion gradients are argued as the probable causes for the long-range cross-talk between flakes and the formation of a single-grain graphene layer. The work demonstrates that graphene synthesis can be advanced to control the nucleated crystal shape, registry, and relative alignment between graphene crystals for large area, that is, a single-crystal bilayer, and (AB-stacked) few-layer graphene can been grown at the wafer scale. © 2020 The Authors. Published by Wiley-VCH GmbH