Search Results

Now showing 1 - 2 of 2
  • Item
    A nonequilibrium model for particle networking/jamming and time-dependent dynamic rheology of filled polymers
    (Basel : MDPI, 2020) Robertson, Christopher G.; Vaikuntam, Sankar Raman; Heinrich, Gert
    We describe an approach for modeling the filler network formation kinetics of particle-reinforced rubbery polymers—commonly called filler flocculation—that was developed by employing parallels between deformation effects in jammed particle systems and the influence of temperature on glass-forming materials. Experimental dynamic viscosity results were obtained concerning the strain-induced particle network breakdown and subsequent time-dependent reformation behavior for uncross-linked elastomers reinforced with carbon black and silica nanoparticles. Using a relaxation time function that depends on both actual dynamic strain amplitude and fictive (structural) strain, the model effectively represented the experimental data for three different levels of dynamic strain down-jump with a single set of parameters. This fictive strain model for filler networking is analogous to the established Tool–Narayanaswamy–Moynihan model for structural relaxation (physical aging) of nonequilibrium glasses. Compared to carbon black, precipitated silica particles without silane surface modification exhibited a greater overall extent of filler networking and showed more self-limiting behavior in terms of network formation kinetics in filled ethylene-propylene-diene rubber (EPDM). The EPDM compounds with silica or carbon black filler were stable during the dynamic shearing and recovery experiments at 160 °C, whereas irreversible dynamic modulus increases were noted when the polymer matrix was styrene-butadiene rubber (SBR), presumably due to branching/cross-linking of SBR in the rheometer. Care must be taken when measuring and interpreting the time-dependent filler networking in unsaturated elastomers at high temperatures.
  • Item
    Enthalpy relaxation, crystal nucleation and crystal growth of biobased poly(butylene isophthalate)
    (Basel : MDPI, 2020) Quattrosoldi, Silvia; Androsch, René; Janke, Andreas; Soccio, Michelina; Lotti, Nadia
    The crystallization behavior of fully biobased poly(butylene isophthalate) (PBI) has been investigated using calorimetric and microscopic techniques. PBI is an extremely slow crystallizing polymer that leads, after melt-crystallization, to the formation of lamellar crystals and rather large spherulites, due to the low nuclei density. Based upon quantitative analysis of the crystal-nucleation behavior at low temperatures near the glass transition, using Tammann’s two-stage nuclei development method, a nucleation pathway for an acceleration of the crystallization process and for tailoring the semicrystalline morphology is provided. Low-temperature annealing close to the glass transition temperature (Tg) leads to the formation of crystal nuclei, which grow to crystals at higher temperatures, and yield a much finer spherulitic superstructure, as obtained after direct melt-crystallization. Similarly to other slowly crystallizing polymers like poly(ethylene terephthalate) or poly(l-lactic acid), low-temperature crystal-nuclei formation at a timescale of hours/days is still too slow to allow non-spherulitic crystallization. The interplay between glass relaxation and crystal nucleation at temperatures slightly below Tg is discussed.