Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Connection intervals in multi-scale dynamic networks

2021, Hirsch, Christian, Jahnel, Benedikt, Cali, Elie

We consider a hybrid spatial communication system in which mobile nodes can connect to static sinks in a bounded number of intermediate relaying hops. We describe the distribution of the connection intervals of a typical mobile node, i.e., the intervals of uninterrupted connection to the family of sinks. This is achieved in the limit of many hops, sparse sinks and growing time horizons. We identify three regimes illustrating that the limiting distribution depends sensitively on the scaling of the time horizon.

Loading...
Thumbnail Image
Item

Stochastic homogenization on irregularly perforated domains

2021, Heida, Martin, Jahnel, Benedikt, Vu, Anh Duc

We study stochastic homogenization of a quasilinear parabolic PDE with nonlinear microscopic Robin conditions on a perforated domain. The focus of our work lies on the underlying geometry that does not allow standard homogenization techniques to be applied directly. Instead we prove homogenization on a regularized geometry and demonstrate afterwards that the form of the homogenized equation is independent from the regularization. Then we pass to the regularization limit to obtain the anticipated limit equation. Furthermore, we show that Boolean models of Poisson point processes are covered by our approach.

Loading...
Thumbnail Image
Item

Sharp phase transition for Cox percolation

2022, Hirsch, Christian, Jahnel, Benedikt, Muirhead, Stephen

We prove the sharpness of the percolation phase transition for a class of Cox percolation models, i.e., models of continuum percolation in a random environment. The key requirements are that the environment has a finite range of dependence and satisfies a local boundedness condition, however the FKG inequality need not hold. The proof combines the OSSS inequality with a coarse-graining construction.

Loading...
Thumbnail Image
Item

Sharp phase transition for Cox percolation

2022, Hirsch, Christian, Jahnel, Benedikt, Muirhead, Stephen

We prove the sharpness of the percolation phase transition for a class of Cox percolation models, i.e., models of continuum percolation in a random environment. The key requirements are that the environment has a finite range of dependence, satisfies a local boundedness condition and can be constructed from a discrete iid random field, however the FKG inequality need not hold. The proof combines the OSSS inequality with a coarse-graining construction that allows us to compare different notions of influence.

Loading...
Thumbnail Image
Item

Phase transitions for the Boolean model of continuum percolation for Cox point processes

2020, Jahnel, Benedikt, Tóbiás, András, Cali, Eli

We consider the Boolean model with random radii based on Cox point processes. Under a condition of stabilization for the random environment, we establish existence and non-existence of subcritical regimes for the size of the cluster at the origin in terms of volume, diameter and number of points. Further, we prove uniqueness of the infinite cluster for sufficiently connected environments.

Loading...
Thumbnail Image
Item

Absence of percolation in graphs based on stationary point processes with degrees bounded by two

2022, Jahnel, Benedikt, Tóbiás, András

We consider undirected graphs that arise as deterministic functions of stationary point processes such that each point has degree bounded by two. For a large class of point processes and edge-drawing rules, we show that the arising graph has no infinite connected component, almost surely. In particular, this extends our previous result for signal-to-interference ratio graphs based on stabilizing Cox point processes and verifies the conjecture of Balister and Bollobás that the bidirectional k-nearest neighbor graph of a two-dimensional homogeneous Poisson point process does not percolate for k=2.