Search Results

Now showing 1 - 10 of 9751
  • Item
    Crystal structure of (2S,4S,7S)-7,7-dichloro-4-(1-chloro-1-methylethyl)-1- (2,2,2-trichloroethyl)bicyclo[4.1.0]heptane, C12H16Cl 6
    (Berlin : de Gruyter, 2009) Boualy, B.; el Firdoussi, L.; Ali, M.A.; Karim, A.; Spannenberg, A.
    C12H16Cl6, orthorhombic, P2 12121 (no. 19), a = 6.0742(3) Å, b = 9.7189(6) Å, c = 26.700(1) Å, V = 1576.2 Å3, Z = 4, Rgt(F) = 0.019, wRref(F2) = 0.045, T= 200 K. © by Oldenbourg Wissenschaftsverlag.
  • Item
    Differentialgeometrie im Grossen (hybrid meeting)
    (Zürich : EMS Publ. House, 2021) Hamenstädt, Ursula; Lang, Urs; Weinkove, Ben
    The field of classical differential geometry has expanded enormously over the last several decades, helped by the development of tools from neighboring fields such as partial differential equations, complex analysis and geometric topology. In the spirit of the previous meetings in the series, this meeting will bring together researchers from apparently separate subfields of differential geometry, but whose work is linked by common themes. In particular, this meeting will emphasize intrinsic geometric questions motivated by the classification and rigidity of global geometric structures and the interaction of curvature with the underlying geometry and topology.
  • Item
    Sharp phase transition for Cox percolation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2022) Hirsch, Christian; Jahnel, Benedikt; Muirhead, Stephen
    We prove the sharpness of the percolation phase transition for a class of Cox percolation models, i.e., models of continuum percolation in a random environment. The key requirements are that the environment has a finite range of dependence and satisfies a local boundedness condition, however the FKG inequality need not hold. The proof combines the OSSS inequality with a coarse-graining construction.
  • Item
    Arbeitsgemeinschaft mit aktuellem Thema: Polylogarithms
    (Zürich : EMS Publ. House, 2004) Kings, Guido; Wildeshaus, Jörg
    [no abstract available]
  • Item
    Simulation of the future sea level contribution of Greenland with a new glacial system model
    (Katlenburg-Lindau : Copernicus, 2018) Calov, Reinhard; Beyer, Sebastian; Greve, Ralf; Beckmann, Johanna; Willeit, Matteo; Kleiner, Thomas; Rückamp, Martin; Humbert, Angelika; Ganopolski, Andrey
    We introduce the coupled model of the Greenland glacial system IGLOO 1.0, including the polythermal ice sheet model SICOPOLIS (version 3.3) with hybrid dynamics, the model of basal hydrology HYDRO and a parameterization of submarine melt for marine-terminated outlet glaciers. The aim of this glacial system model is to gain a better understanding of the processes important for the future contribution of the Greenland ice sheet to sea level rise under future climate change scenarios. The ice sheet is initialized via a relaxation towards observed surface elevation, imposing the palaeo-surface temperature over the last glacial cycle. As a present-day reference, we use the 1961-1990 standard climatology derived from simulations of the regional atmosphere model MAR with ERA reanalysis boundary conditions. For the palaeo-part of the spin-up, we add the temperature anomaly derived from the GRIP ice core to the years 1961-1990 average surface temperature field. For our projections, we apply surface temperature and surface mass balance anomalies derived from RCP 4.5 and RCP 8.5 scenarios created by MAR with boundary conditions from simulations with three CMIP5 models. The hybrid ice sheet model is fully coupled with the model of basal hydrology. With this model and the MAR scenarios, we perform simulations to estimate the contribution of the Greenland ice sheet to future sea level rise until the end of the 21st and 23rd centuries. Further on, the impact of elevation-surface mass balance feedback, introduced via the MAR data, on future sea level rise is inspected. In our projections, we found the Greenland ice sheet to contribute between 1.9 and 13.0 cm to global sea level rise until the year 2100 and between 3.5 and 76.4 cm until the year 2300, including our simulated additional sea level rise due to elevation-surface mass balance feedback. Translated into additional sea level rise, the strength of this feedback in the year 2100 varies from 0.4 to 1.7 cm, and in the year 2300 it ranges from 1.7 to 21.8 cm. Additionally, taking the Helheim and Store glaciers as examples, we investigate the role of ocean warming and surface runoff change for the melting of outlet glaciers. It shows that ocean temperature and subglacial discharge are about equally important for the melting of the examined outlet glaciers.
  • Item
    The Mathematical, Computational and Biological Study of Vision
    (Oberwolfach-Walke : Mathematisches Forschungsinstitut Oberwolfach, 2001) von der Malsburg, Christoph; Mumford, David
    [no abstract available]
  • Item
    Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping
    (Weinheim : Wiley-VCH, 2019) Tondera, Christoph; Akbar, Teuku Fawzul; Thomas, Alvin Kuriakose; Lin, Weilin; Werner, Carsten; Busskamp, Volker; Zhang, Yixin; Minev, Ivan R.
    Electrically conductive materials that mimic physical and biological properties of tissues are urgently required for seamless brain-machine interfaces. Here, a multinetwork hydrogel combining electrical conductivity of 26 S m-1 , stretchability of 800%, and tissue-like elastic modulus of 15 kPa with mimicry of the extracellular matrix is reported. Engineering this unique set of properties is enabled by a novel in-scaffold polymerization approach. Colloidal hydrogels of the nanoclay Laponite are employed as supports for the assembly of secondary polymer networks. Laponite dramatically increases the conductivity of in-scaffold polymerized poly(ethylene-3,4-diethoxy thiophene) in the absence of other dopants, while preserving excellent stretchability. The scaffold is coated with a layer containing adhesive peptide and polysaccharide dextran sulfate supporting the attachment, proliferation, and neuronal differentiation of human induced pluripotent stem cells directly on the surface of conductive hydrogels. Due to its compatibility with simple extrusion printing, this material promises to enable tissue-mimetic neurostimulating electrodes.
  • Item
    Magnetization Dynamics of an Individual Single-Crystalline Fe-Filled Carbon Nanotube
    (Weinheim : Wiley-VCH, 2019) Lenz, Kilian; Narkowicz, Ryszard; Wagner, Kai; Reiche, Christopher F.; Körner, Julia; Schneider, Tobias; Kákay, Attila; Schultheiss, Helmut; Weissker, Uhland; Wolf, Daniel; Suter, Dieter; Büchner, Bernd; Fassbender, Jürgen; Mühl, Thomas; Lindner, Jürgen
    The magnetization dynamics of individual Fe-filled multiwall carbon-nanotubes (FeCNT), grown by chemical vapor deposition, are investigated by microresonator ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) microscopy and corroborated by micromagnetic simulations. Currently, only static magnetometry measurements are available. They suggest that the FeCNTs consist of a single-crystalline Fe nanowire throughout the length. The number and structure of the FMR lines and the abrupt decay of the spin-wave transport seen in BLS indicate, however, that the Fe filling is not a single straight piece along the length. Therefore, a stepwise cutting procedure is applied in order to investigate the evolution of the ferromagnetic resonance lines as a function of the nanowire length. The results show that the FeCNT is indeed not homogeneous along the full length but is built from 300 to 400 nm long single-crystalline segments. These segments consist of magnetically high quality Fe nanowires with almost the bulk values of Fe and with a similar small damping in relation to thin films, promoting FeCNTs as appealing candidates for spin-wave transport in magnonic applications. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Mechanics of Materials: Mechanics of Interfaces and Evolving Microstructure
    (Zürich : EMS Publ. House, 2016) McDowell, David L.; Müller, Stefan; Werner, Ewald A.
    Emphasis in modern day efforts in mechanics of materials is increasingly directed towards integration with computational materials science, which itself rests on solid physical and mathematical foundations in thermodynamics and kinetics of processes. Practical applications demand attention to length and time scales which are sufficiently large to preclude direct application of quantum mechanics approaches; accordingly, there are numerous pathways to mathematical modelling of the complexity of material structure during processing and in service. The conventional mathematical machinery of energy minimization provides guidance but has limited direct applicability to material systems evolving away from equilibrium. Material response depends on driving forces, whether arising from mechanical, electromagnetic, or thermal fields. When microstructures evolve, as during plastic deformation, progressive damage and fracture, corrosion, stress-assisted diffusion, migration or chemical/thermal aging, the associated classical mathematical frameworks are often ad hoc and heuristic. Advancing new and improved methods is a major focus of 21st century mechanics of materials of interfaces and evolving microstructure.
  • Item
    Gradient methods for problems with inexact model of the objective
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Stonyakin, Fedor; Dvinskikh, Darina; Dvurechensky, Pavel; Kroshnin, Alexey; Kuznetsova, Olesya; Agafonov, Artem; Gasnikov, Alexander; Tyurin, Alexander; Uribe, Cesar A.; Pasechnyuk, Dmitry; Artamonov, Sergei
    We consider optimization methods for convex minimization problems under inexact information on the objective function. We introduce inexact model of the objective, which as a particular cases includes inexact oracle [19] and relative smoothness condition [43]. We analyze gradient method which uses this inexact model and obtain convergence rates for convex and strongly convex problems. To show potential applications of our general framework we consider three particular problems. The first one is clustering by electorial model introduced in [49]. The second one is approximating optimal transport distance, for which we propose a Proximal Sinkhorn algorithm. The third one is devoted to approximating optimal transport barycenter and we propose a Proximal Iterative Bregman Projections algorithm. We also illustrate the practical performance of our algorithms by numerical experiments.