Search Results

Now showing 1 - 10 of 84
  • Item
    Immune mobilising T cell receptors redirect polyclonal CD8+ T cells in chronic HIV infection to form immunological synapses
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2022) Wallace, Zoë; Kopycinski, Jakub; Yang, Hongbing; McCully, Michelle L.; Eggeling, Christian; Chojnacki, Jakub; Dorrell, Lucy
    T cell exhaustion develops in human immunodeficiency virus (HIV) infection due to chronic viral antigenic stimulation. This adaptive response primarily affects virus-specific CD8+ T cells, which may remain dysfunctional despite viral load-reducing antiretroviral therapy; however, abnormalities may also be evident in non-HIV-specific populations. Both could limit the efficacy of cell therapies against viral reservoirs. Here, we show that bulk (polyclonal) CD8+ T cells from people living with HIV (PLWH) express proposed markers of dysfunctional HIV-specific T cells at high levels yet form lytic immunological synapses (IS) and eliminate primary resting infected (HIV Gaglo) CD4+ T cells, when redirected by potent bispecific T cell-retargeting molecules, Immune mobilising monoclonal T cell receptors (TCR) Against Virus (ImmTAV). While PLWH CD8+ T cells are functionally impaired when compared to CD8+ T cells from HIV-naïve donors, ImmTAV redirection enables them to eliminate Gaglo CD4+ T cells that are insensitive to autologous HIV-specific cytolytic T cells. ImmTAV molecules may therefore be able to target HIV reservoirs, which represent a major barrier to a cure.
  • Item
    The environmental footprint of health care: a global assessment
    (Amsterdam : Elsevier, 2020) Lenzen, Manfred; Malik, Arunima; Li, Mengyu; Fry, Jacob; Weisz, Helga; Pichler, Peter-Paul; Chaves, Leonardo Suveges Moreira; Capon, Anthony; Pencheon, David
    Background: Health-care services are necessary for sustaining and improving human wellbeing, yet they have an environmental footprint that contributes to environment-related threats to human health. Previous studies have quantified the carbon emissions resulting from health care at a global level. We aimed to provide a global assessment of the wide-ranging environmental impacts of this sector. Methods: In this multiregional input-output analysis, we evaluated the contribution of health-care sectors in driving environmental damage that in turn puts human health at risk. Using a global supply-chain database containing detailed information on health-care sectors, we quantified the direct and indirect supply-chain environmental damage driven by the demand for health care. We focused on seven environmental stressors with known adverse feedback cycles: greenhouse gas emissions, particulate matter, air pollutants (nitrogen oxides and sulphur dioxide), malaria risk, reactive nitrogen in water, and scarce water use. Findings: Health care causes global environmental impacts that, depending on which indicator is considered, range between 1% and 5% of total global impacts, and are more than 5% for some national impacts. Interpretation: Enhancing health-care expenditure to mitigate negative health effects of environmental damage is often promoted by health-care practitioners. However, global supply chains that feed into the enhanced activity of health-care sectors in turn initiate adverse feedback cycles by increasing the environmental impact of health care, thus counteracting the mission of health care. Funding: Australian Research Council, National eResearch Collaboration Tools and Resources project. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
  • Item
    Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis
    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.
  • Item
    Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS)
    (Wyoming, NSW : Ivyspring, 2021) Strobbia, Pietro; Cupil-Garcia, Vanessa; Crawford, Bridget M.; Fales, Andrew M.; Pfefer, T. Joshua; Liu, Yang; Maiwald, Martin; Sumpf, Bernd; Vo-Dinh, Tuan
    For the majority of cancer patients, surgery is the primary method of treatment. In these cases, accurately removing the entire tumor without harming surrounding tissue is critical; however, due to the lack of intraoperative imaging techniques, surgeons rely on visual and physical inspection to identify tumors. Surface-enhanced Raman scattering (SERS) is emerging as a non-invasive optical alternative for intraoperative tumor identification, with high accuracy and stability. However, Raman detection requires dark rooms to work, which is not consistent with surgical settings. Methods: Herein, we used SERS nanoprobes combined with shifted-excitation Raman difference spectroscopy (SERDS) detection, to accurately detect tumors in xenograft murine model. Results: We demonstrate for the first time the use of SERDS for in vivo tumor detection in a murine model under ambient light conditions. We compare traditional Raman detection with SERDS, showing that our method can improve sensitivity and accuracy for this task. Conclusion: Our results show that this method can be used to improve the accuracy and robustness of in vivo Raman/SERS biomedical application, aiding the process of clinical translation of these technologies. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
  • Item
    Glycosaminoglycan-based hydrogels to modulate heterocellular communication in in vitro angiogenesis models
    (London : Nature Publishing Group, 2014) Chwalek, K.; Tsurkan, M.V.; Freudenberg, U.; Werner, C.
    Angiogenesis, the outgrowth of blood vessels, is crucial in development, disease and regeneration. Studying angiogenesis in vitro remains challenging because the capillary morphogenesis of endothelial cells (ECs) is controlled by multiple exogenous signals. Therefore, a set of in situ-forming starPEG-heparin hydrogels was used to identify matrix parameters and cellular interactions that best support EC morphogenesis. We showed that a particular type of soft, matrix metalloproteinase-degradable hydrogel containing covalently bound integrin ligands and reversibly conjugated pro-angiogenic growth factors could boost the development of highly branched, interconnected, and lumenized endothelial capillary networks. Using these effective matrix conditions, 3D heterocellular interactions of ECs with different mural cells were demonstrated that enabled EC network modulation and maintenance of stable vascular capillaries over periods of about one month in vitro. The approach was also shown to permit in vitro tumor vascularization experiments with unprecedented levels of control over both ECs and tumor cells. In total, the introduced 3D hydrogel co-culture system could offer unique options for dissecting and adjusting biochemical, biophysical, and cell-cell triggers in tissue-related vascularization models.
  • Item
    Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen
    (London : Nature Publishing Group, 2021) Miebach, Lea; Freund, Eric; Horn, Stefan; Niessner, Felix; Sagwal, Sanjeev Kumar; von Woedtke, Thomas; Emmert, Steffen; Weltmann, Klaus-Dieter; Clemen, Ramona; Schmidt, Anke; Gerling, Torsten; Bekeschus, Sander
    Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.
  • Item
    Acquired cancer tyrosine kinase inhibitor resistance: ROS as critical determinants
    (London : Macmillan Publishers, part of Springer Nature, 2021) Bekeschus, Sander
    [No abstract available]
  • Item
    Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo
    ([London] : Macmillan Publishers Limited, 2017) Liedtke, Kim Rouven; Bekeschus, Sander; Kaeding, André; Hackbarth, Christine; Kuehn, Jens-Peter; Heidecke, Claus-Dieter; von Bernstorff, Wolfram; von Woedtke, Thomas; Partecke, Lars Ivo
    Pancreatic cancer is associated with a high mortality rate. In advanced stage, patients often experience peritoneal carcinomatosis. Using a syngeneic murine pancreatic cancer cell tumor model, the effect of non-thermal plasma (NTP) on peritoneal metastatic lesions was studied. NTP generates reactive species of several kinds which have been proven to be of relevance in cancer. In vitro, exposure to both plasma and plasma-treated solution significantly decreased cell viability and proliferation of 6606PDA cancer cells, whereas mouse fibroblasts were less affected. Repeated intraperitoneal treatment of NTP-conditioned medium decreased tumor growth in vivo as determined by magnetic resonance imaging, leading to reduced tumor mass and improved median survival (61 vs 52 days; p < 0.024). Tumor nodes treated by NTP-conditioned medium demonstrated large areas of apoptosis with strongly inhibited cell proliferation. Contemporaneously, no systemic effects were found. Apoptosis was neither present in the liver nor in the gut. Also, the concentration of different cytokines in splenocytes or blood plasma as well as the distribution of various hematological parameters remained unchanged following treatment with NTP-conditioned medium. These results suggest an anticancer role of NTP-treated solutions with little to no systemic side effects being present, making NTP-treated solutions a potential complementary therapeutic option for advanced tumors.
  • Item
    Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countries
    (London : BMJ Publ. Group, 2020) Vicedo-Cabrera, Ana M.; Sera, Francesco; Liu, Cong; Armstrong, Ben; Milojevic, Ai; Guo, Yuming; Tong, Shilu; Lavigne, Eric; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Samoli, Evangelia; Stafoggia, Massimo; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Hurtado-Diaz, Magali; Cruz, Julio; Silva, Susana; Madureira, Joana; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Röösli, Martin; Guo, Yue-Liang Leon; Chen, Bing-Yu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L.; Kan, Haidong; Gasparrini, Antonio
    Objective To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. Design Two stage time series analysis. Setting 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. Population Deaths for all causes or for external causes only registered in each city within the study period. Main outcome measures Daily total mortality (all or non-external causes only). Results A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 μg/m 3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 μg/m 3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 μg/m 3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. Conclusions Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies. © Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to.
  • Item
    Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 cities
    (London : BMJ Publ. Group, 2021) Meng, Xia; Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Milojevic, Ai; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolas Valdes; Osorio, Samuel; Garcia, null; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J. K.; Ryti, Niilo; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Nunes, Baltazar; Teixeira, João Paulo; Holobaca, Iulian Horia; Fratianni, Simona; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Pan, Shih-Chun; Li, Shanshan; Bell, Michelle L.; Zanobetti, Antonella; Schwartz, Joel; Wu, Tangchun; Gasparrini, Antonio; Kan, Haidong
    Objective To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting 398 cities in 22 low to high income countries/regions. Main outcome measures Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. Conclusions This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.