Search Results

Now showing 1 - 2 of 2
  • Item
    Unraveling the Orbital Physics in a Canonical Orbital System KCuF3
    (College Park, Md. : APS, 2021) Li, Jiemin; Xu, Lei; Garcia-Fernandez, Mirian; Nag, Abhishek; Robarts, H.C.; Walters, A.C.; Liu, X.; Zhou, Jianshi; Wohlfeld, Krzysztof; van den Brink, Jeroen; Ding, Hong; Zhou, Ke-Jin
    We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF3 using the Cu L3-edge resonant inelastic x-ray scattering. We show that the nondispersive high-energy peaks result from the Cu2+  dd orbital excitations. These high-energy modes display good agreement with the ab initio quantum chemistry calculation, indicating that the dd excitations are highly localized. At the same time, the low-energy excitations present clear dispersion. They match extremely well with the two-spinon continuum following the comparison with Müller ansatz calculations. The localized dd excitations and the observation of the strongly dispersive magnetic excitations suggest that the orbiton dispersion is below the resolution detection limit. Our results can reconcile with the strong local Jahn-Teller effect in KCuF3, which predominantly drives orbital ordering.
  • Item
    Ultrafast Optically Induced Ferromagnetic State in an Elemental Antiferromagnet
    (College Park, Md. : APS, 2021) Golias, E.; Kumberg, I.; Gelen, I.; Thakur, S.; Gördes, J.; Hosseinifar, R.; Guillet, Q.; Dewhurst, J.K.; Sharma, S.; Schüßler-Langeheine, C.; Pontius, N.; Kuch, W.
    We present evidence for an ultrafast optically induced ferromagnetic alignment of antiferromagnetic Mn in Co/Mn multilayers. We observe the transient ferromagnetic signal at the arrival of the pump pulse at the Mn L3 resonance using x-ray magnetic circular dichroism in reflectivity. The timescale of the effect is comparable to the duration of the excitation and occurs before the magnetization in Co is quenched. Theoretical calculations point to the imbalanced population of Mn unoccupied states caused by the Co interface for the emergence of this transient ferromagnetic state.