Search Results

Now showing 1 - 2 of 2
  • Item
    Needle beams: a review
    (Abingdon : Taylor and Francis Ltd., 2020) Grunwald R.; Bock M.
    Needle beams are highly attractive for applications which take advantage from a spatial and temporal localization of photons. High intensities, high resolution and extended depth of focus lead to fundamental advances in the optical system performance. Ultrashort, fringe-free, self-reconstructing nondiffracting pulses with undistorted temporal transfer are obtained by generating truncated Bessel beams under self-apodization conditions. Nondiffracting Talbot self-imaging of needle beam arrays enables to transfer near field information to the Fraunhofer zone. With addressable arrays of needle beams, reconfigurable time-wavefront sensors are built up. Moreover, spatial light modulators and flexible axicons are used to realize structured, highly localized wavepackets, accelerating beams and nondiffracting images. © 2020, © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
  • Item
    Infrared spectroscopy in superfluid helium droplets
    (Abingdon : Taylor and Francis Ltd., 2019) Verma D.; Tanyag R.M.P.; O’Connell S.M.O.; Vilesov A.F.
    For more than two decades, encapsulation in superfluid helium nanodroplets has served as a reliable technique for probing the structure and dynamics of molecules and clusters at a low temperature of ≈0.37 K. Due to weak interactions between molecules and the host liquid helium, good spectral resolution can usually be achieved, making helium droplets an ideal matrix for spectroscopy in a wide spectral range from infrared to ultraviolet. Furthermore, rotational structure in the spectra of small molecules provides a unique probe for interactions with the superfluid on an atomic scale. This review presents a summary of results and a discussion of recent experimental developments in helium droplet spectroscopy with the emphasis laid on infrared studies. Initially, studies focused on single molecules and have been expanded to larger species, such as metal-molecular clusters, biomolecules, free radicals, ions, and proteins. © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.