Search Results

Now showing 1 - 10 of 60
Loading...
Thumbnail Image
Item

Strong Wet and Dry Adhesion by Cupped Microstructures

2019, Wang, Y., Kang, V., Arzt, E., Federle, W., Hensel, R.

Recent advances in bio-inspired microfibrillar adhesives have resulted in technologies that allow reliable attachment to a variety of surfaces. Because capillary and van der Waals forces are considerably weakened underwater, fibrillar adhesives are however far less effective in wet environments. Although various strategies have been proposed to achieve strong reversible underwater adhesion, strong adhesives that work both in air and underwater without additional surface treatments have yet to be developed. In this study, we report a novel design - cupped microstructures (CM) - that generates strong controllable adhesion in air and underwater. We measured the adhesive performance of cupped polyurethane microstructures with three different cup angles (15, 30, and 45°) and the same cup diameter of 100 μm in dry and wet conditions in comparison to standard mushroom-shaped microstructures (MSMs) of the same dimensions. In air, 15°CM performed comparably to the flat MSM of the same size with an adhesion strength (force per real contact area) of up to 1.3 MPa, but underwater, 15°CM achieved 20 times stronger adhesion than MSM (∼1 MPa versus ∼0.05 MPa). Furthermore, the cupped microstructures exhibit self-sealing properties, whereby stronger pulls lead to longer stable attachment and much higher adhesion through the formation of a better seal. © 2019 American Chemical Society.

Loading...
Thumbnail Image
Item

Combining Battery‐Type and Pseudocapacitive Charge Storage in Ag/Ti3C2Tx MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport

2020, Liang, Mingxing, Wang, Lei, Presser, Volker, Dai, Xiaohu, Yu, Fei, Ma, Jie

The recent advances in chloride‐ion capturing electrodes for capacitive deionization (CDI) are limited by the capacity, rate, and stability of desalination. This work introduces Ti3C2Tx/Ag synthesized via a facile oxidation‐reduction method and then uses it as an anode for chloride‐ion capture in CDI. Silver nanoparticles are formed successfully and uniformly distributed with the layered‐structure of Ti3C2Tx. All Ti3C2Tx/Ag samples are hydrophilic, which is beneficial for water desalination. Ti3C2Tx/Ag samples with a low charge transfer resistance exhibit both pseudocapacitive and battery behaviors. Herein, the Ti3C2Tx/Ag electrode with a reaction time of 3 h exhibits excellent desalination performance with a capacity of 135 mg Cl− g−1 at 20 mA g−1 in a 10 × 10−3 m NaCl solution. Furthermore, low energy consumption of 0.42 kWh kg−1 Cl− and a desalination rate of 1.5 mg Cl− g−1 min−1 at 50 mA g−1 is achieved. The Ti3C2Tx/Ag system exhibits fast rate capability, high desalination capacity, low energy consumption, and excellent cyclability, which can be ascribed to the synergistic effect between the battery and pseudocapacitive behaviors of the Ti3C2Tx/Ag hybrid material. This work provides fundamental insight into the coupling of battery and pseudocapacitive behaviors during Cl− capture for electrochemical desalination.

Loading...
Thumbnail Image
Item

Contact Aging Enhances Adhesion of Micropatterned Silicone Adhesives to Glass Substrates

2020, Thiemecke, Jonathan, Hensel, René

The transfer of biological concepts into synthetic micropatterned adhesives has recently enabled a new generation of switchable, reversible handling devices. Over the last two decades, many design principles have been explored that helped to understand the underlying mechanics and to optimize such adhesives for certain applications. An aspect that has been overlooked so far is the influence of longer hold times on the adhesive contacts. Exemplarily, the pull‐off stress and work of separation of a micropatterned adhesive specimen are enhanced by factors 3 and 6, respectively, after 1000 min in contact with a glass substrate. In addition to such global measures, the increase of adhesion of all individual micropillars is analyzed. It is found that contact aging varied across the microarray, as it drastically depends on local conditions. Despite great differences on the micropillar scale, the adhesion of entire specimens increased with very similar power laws, as this is determined by the mean contact ageing of the individual structures. Overall, contact aging must be critically evaluated before using micropatterned adhesives, especially for long‐term fixations and material combinations that are chemically attractive to each other.

Loading...
Thumbnail Image
Item

Double-Hydrophobic-Coating through Quenching for Hydrogels with Strong Resistance to Both Drying and Swelling

2020, Mredha, M.T.I., Le, H.H., Cui, J., Jeon, I.

In recent years, various hydrogels with a wide range of functionalities have been developed. However, owing to the two major drawbacks of hydrogels—air-drying and water-swelling—hydrogels developed thus far have yet to achieve most of their potential applications. Herein, a bioinspired, facile, and versatile method for fabricating hydrogels with high stability in both air and water is reported. This method includes the creation of a bioinspired homogeneous fusion layer of a hydrophobic polymer and oil in the outermost surface layer of the hydrogel via a double-hydrophobic-coating produced through quenching. As a proof-of-concept, this method is applied to a polyacrylamide hydrogel without compromising its mechanical properties. The coated hydrogel exhibits strong resistance to both drying in air and swelling in multiple aqueous environments. Furthermore, the versatility of this method is demonstrated using different types of hydrogels and oils. Because this method is easy to apply and is not dependent on hydrogel surface chemistry, it can significantly broaden the scope of next-generation hydrogels for real-world applications in both wet and dry environments.

Loading...
Thumbnail Image
Item

Influence of core size and capping ligand of gold nanoparticles on the desorption/ionization efficiency of small biomolecules in AP‐SALDI‐MS

2020, Liu, Zhen, Zhang, Peng, Pyttlik, Andrea, Kraus, Tobias, Volmer, Dietrich A.

Gold nanoparticles (AuNP) are frequently used in surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS) for analysis of biomolecules because they exhibit suitable thermal and chemical properties as well as strong surface plasmonic effects. Moreover, the structures of AuNP can be controlled by well‐established synthesis protocols. This was important in the present work, which studied the influence of the nanoparticles’ structures on atmospheric pressure (AP)‐SALDI‐MS performance. A series of AuNP with different core sizes and capping ligands were investigated, to examine the desorption/ionization efficiency (DIE) under AP‐SALDI conditions. The results showed that both the AuNP core size as well as the nature of the surface ligand had a strong influence on DIE. DIE increased with the size of the AuNP and the hydrophobicity of the ligands. Chemical interactions between ligand and analytes also influenced DIE. Moreover, we discovered that removing the organic ligands from the deposited AuNP substrate layer by simple laser irradiation prior to LDI further amplified DIE values. The optimized AuNP were successfully used to analyze a wide arrange of different low molecular weight biomolecules as well as a crude pig brain extract, which readily demonstrated the ability of the technique to detect a wide range of lipid species within highly complex samples.

Loading...
Thumbnail Image
Item

When Ultimate Adhesive Mechanism Meets Ultimate Anti‐Fouling Surfaces - Polydopamine Versus SLIPS: Which One Prevails?

2020, Prieto-López, Lizbeth Ofelia, Herbeck-Engel, Petra, Yang, Li, Wu, Qian, Li, Juntang, Cui, Jiaxi

What happens when the extremely adhesive and versatile chemistry of polydopamine (PDA) is in contact with the extremely slippery surfaces known as slippery liquid‐infused porous substrates (SLIPS)? Inspired by the pitcher plant, SLIPS possess excellent repellence against a variety of complex liquids and have been proposed as promising antifouling surfaces because of their successful performance even in marine environments. In the counterpart, inspired by the adhesive proteins enabling the strong adhesion of mussels to multiple substrates, PDA has been extensively studied for its ability to adhere on nearly every type of substrate. The interaction between various SLIPS systems and the highly fouling medium from the oxidative polymerization of dopamine is explored here. A PDA coating is observed on all the SLIPS evaluated, modifying their hydrophobicity in most cases. In‐depth study of silicone‐based SLIPS shows that hydrophobicity of PDA coated SLIPS partially recovers with time due to percolation of the lubricant through the coating. “Strongly” bound PDA species are attributed to the formation of dopamine‐polydimethylsiloxane species on the crosslinked matrix, rendering a coating that withstands repeated washing steps in various solvents including water, hexane, and toluene. The results not only satisfy scientific curiosity but also imply a strategy to modify/bond SLIPS.

Loading...
Thumbnail Image
Item

Lighting the Path: Light Delivery Strategies to Activate Photoresponsive Biomaterials In Vivo

2021, Pearson, Samuel, Feng, Jun, del Campo, Aránzazu

Photoresponsive biomaterials are experiencing a transition from in vitro models to in vivo demonstrations that point toward clinical translation. Dynamic hydrogels for cell encapsulation, light-responsive carriers for controlled drug delivery, and nanomaterials containing photosensitizers for photodynamic therapy are relevant examples. Nonetheless, the step to the clinic largely depends on their combination with technologies to bring light into the body. This review highlights the challenge of photoactivation in vivo, and presents strategies for light management that can be adopted for this purpose. The authors’ focus is on technologies that are materials-driven, particularly upconversion nanoparticles that assist in “direct path” light delivery through tissue, and optical waveguides that “clear the path” between external light source and in vivo target. The authors’ intention is to assist the photoresponsive biomaterials community transition toward medical technologies by presenting light delivery concepts that can be integrated with the photoresponsive targets. The authors also aim to stimulate further innovation in materials-based light delivery platforms by highlighting needs and opportunities for in vivo photoactivation of biomaterials. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.

Loading...
Thumbnail Image
Item

High-Resolution Inkjet Printing of Quantum Dot Light-Emitting Microdiode Arrays

2020, Yang, P., Zhang, L., Kang, D.J., Strahl, R., Kraus, T.

The direct printing of microscale quantum dot light-emitting diodes (QLEDs) is a cost-effective alternative to the placement of pre-formed LEDs. The quality of printed QLEDs currently is limited by nonuniformities in droplet formation, wetting, and drying during inkjet printing. Here, optimal ink formulation which can suppress nonuniformities at the pixel and array levels is demonstrated. A solvent mixture is used to tune the ejected droplet size, ensure wetting, and provoke Marangoni flows that prevent coffee stain rings. Arrays of green QLED devices are printed at a resolution of 500 pixels in.−1 with a maximum luminance of ≈3000 cd m−2 and a peak current efficiency of 2.8 cd A−1. The resulting array quality is sufficient to print displays at state-of-the-art resolutions.

Loading...
Thumbnail Image
Item

Engineering Micropatterned Dry Adhesives: From Contact Theory to Handling Applications

2018, Hensel, René, Moh, Karsten, Arzt, Eduard

Reversible adhesion is the key functionality to grip, place, and release objects nondestructively. Inspired by nature, micropatterned dry adhesives are promising candidates for this purpose and have attracted the attention of research groups worldwide. Their enhanced adhesion compared to nonpatterned surfaces is frequently demonstrated. An important conclusion is that the contact mechanics involved is at least as important as the surface energy and chemistry. In this paper, the roles of the contact geometry and mechanical properties are reviewed. With a focus on applications, the effects of substrate roughness and of temperature variations, and the long-term performance of micropatterned adhesives are discussed. The paper provides a link between the current, detailed understanding of micropatterned adhesives and emerging applications.

Loading...
Thumbnail Image
Item

Self-Hydrophobization in a Dynamic Hydrogel for Creating Nonspecific Repeatable Underwater Adhesion

2020, Han, L., Wang, M., Prieto-López, L.O., Deng, X., Cui, J.

Adhesive hydrogels are widely applied for biological and medical purposes; however, they are generally unable to adhere to tissues under wet/underwater conditions. Herein, described is a class of novel dynamic hydrogels that shows repeatable and long-term stable underwater adhesion to various substrates including wet biological tissues. The hydrogels have Fe3+-induced hydrophobic surfaces, which are dynamic and can undergo a self-hydrophobization process to achieve strong underwater adhesion to a diverse range of dried/wet substrates without the need for additional processes or reagents. It is also demonstrated that the hydrogels can directly adhere to biological tissues in the presence of under sweat, blood, or body fluid exposure, and that the adhesion is compatible with in vivo dynamic movements. This study provides a novel strategy for fabricating underwater adhesive hydrogels for many applications, such as soft robots, wearable devices, tissue adhesives, and wound dressings.