Search Results

Now showing 1 - 2 of 2
  • Item
    Ammonia and greenhouse gas emissions from slurry storage : A review
    (Amsterdam [u.a.] : Elsevier, 2020) Kupper, Thomas; Häni, Christoph; Neftel, Albrecht; Kincaid, Chris; Bühler, Marcel; Amon, Barbara; VanderZaag, Andrew
    Storage of slurry is an important emission source for ammonia (NH3), nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) and hydrogen sulfide (H2S) from livestock production. Therefore, this study collected published emission data from stored cattle and pig slurry to determine baseline emission values and emission changes due to slurry treatment and coverage of stores. Emission data were collected from 120 papers yielding 711 records of measurements conducted at farm-, pilot- and laboratory-scale. The emission data reported in a multitude of units were standardized and compiled in a database. Descriptive statistics of the data from untreated slurry stored uncovered revealed a large variability in emissions for all gases. To determine baseline emissions, average values based on a weighting of the emission data according to the season and the duration of the emission measurements were constructed using the data from farm-scale and pilot-scale studies. Baseline emissions for cattle and pig slurry stored uncovered were calculated. When possible, it was further distinguished between storage in tanks without slurry treatment and storage in lagoons which implies solid-liquid separation and biological treatment. The baseline emissions on an area or volume basis are: for NH3: 0.12 g m−2 h-1 and 0.15 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 0.08 g m−2 h-1 and 0.24 g m−2 h-1 for cattle and pig slurry stored in tanks; for N2O: 0.0003 g m−2 h-1 for cattle slurry stored in lagoons, and 0.002 g m−2 h-1 for both slurry types stored in tanks; for CH4: 0.95 g m-3 h-1 and 3.5 g m-3 h-1 for cattle and pig slurry stored in lagoons, and 0.58 g m-3 h-1 and 0.68 g m-3 h-1 for cattle and pig slurry stored in tanks; for CO2: 6.6 g m−2 h-1 and 0.3 g m−2 h-1 for cattle and pig slurry stored in lagoons, and 8.0 g m−2 h-1 for both slurry types stored in tanks; for H2S: 0.04 g m−2 h-1 and 0.01 g m−2 h-1 for cattle and pig slurry stored in lagoons. Related to total ammoniacal nitrogen (TAN), baseline emissions for tanks are 16% and 15% of TAN for cattle and pig slurry, respectively. Emissions of N2O and CH4 relative to nitrogen (N) and volatile solids (VS) are 0.13% of N and 0.10% of N and 2.9% of VS and 4.7% of VS for cattle and pig slurry, respectively. Total greenhouse gas emissions from slurry stores are dominated by CH4. The records on slurry treatment using acidification show a reduction of NH3 and CH4 emissions during storage while an increase occurs for N2O and a minor change for CO2 as compared to untreated slurry. Solid-liquid separation causes higher losses for NH3 and a reduction in CH4, N2O and CO2 emissions. Anaerobically digested slurry shows higher emissions during storage for NH3 while losses tend to be lower for CH4 and little changes occur for N2O and CO2 compared to untreated slurry. All cover types are found to be efficient for emission mitigation of NH3 from stores. The N2O emissions increase in many cases due to coverage. Lower CH4 emissions occur for impermeable covers as compared to uncovered slurry storage while for permeable covers the effect is unclear or emissions tend to increase. Limited and inconsistent data regarding emission changes with covering stores are available for CO2 and H2S. The compiled data provide a basis for improving emission inventories and highlight the need for further research to reduce uncertainty and fill data gaps regarding emissions from slurry storage.
  • Item
    Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production
    (Amsterdam [u.a.] : Elsevier Science, 2020) Kreidenweis, Ulrich; Breier, Jannes; Herrmann, Christiane; Libra, Judy; Prochnow, Annette
    The production of broiler meat has increased significantly in the last decades in Germany and worldwide, and is projected to increase further in the future. As the number of animals raised increases, so too does the amount of manure produced. The identification of manure treatment options that cause low greenhouse gas emissions becomes ever more important. This study compares four treatment options for broiler manure followed by field spreading: storage before distribution, composting, anaerobic digestion in a biogas plant and production of biochar. For these options potential direct and indirect greenhouse gas emissions were assessed for the situation in Germany. Previous analyses have shown that greenhouse gas balances of manure management are often strongly influenced by a small number of processes. Therefore, in this study major processes were represented with several variants and the sensitivity of model results to different management decisions and uncertain parameters was assessed. In doing so, correlations between processes were considered, in which higher emissions earlier on in the process chain reduce emissions later. The results show that biogas production from broiler manure leads to the lowest greenhouse gas emissions in most of the analysed cases, mainly due to the emission savings related to the substitution of mineral fertilizers and the production of electricity. Pyrolysis of the manure and subsequent field spreading as a soil amendment can lead to similarly low emissions due to the long residence time of the biochar, and may even be the better option than poorly managed biogas production. Composting is the treatment option resulting in highest emissions of greenhouse gases, due to high ammonia volatilization, and is likely worse than untreated storage in this respect. These results are relatively insensitive to the length of transport required for field spreading, but high uncertainties are associated with the use of emission factors.