Search Results

Now showing 1 - 10 of 10
  • Item
    Nanomechanics of self-assembled DNA building blocks
    (Cambridge : RSC Publ., 2021) Penth, Michael; Schellnhuber, Kordula; Bennewitz, Roland; Blass, Johanna
    DNA has become a powerful platform to design functional nanodevices. DNA nanodevices are often composed of self-assembled DNA building blocks that differ significantly from the structure of native DNA. In this study, we present Flow Force Microscopy as a massively parallel approach to study the nanomechanics of DNA self-assemblies on the single-molecular level. The high-throughput experiments performed in a simple microfluidic channel enable statistically meaningful studies with nanometer scale precision in a time frame of several minutes. A surprisingly high flexibility was observed for a typical construct used in DNA origami, reflected in a persistence length of 10.2 nm, a factor of five smaller than for native DNA. The enhanced flexibility is attributed to the discontinuous backbone of DNA self-assemblies that facilitate base pair opening by thermal fluctuations at the end of hybridized oligomers. We believe that the results will contribute to the fundamental understanding of DNA nanomechanics and help to improve the design of DNA nanodevices with applications in biological analysis and clinical research.
  • Item
    Precipitate number density determination in microalloyed steels by complementary atom probe tomography and matrix dissolution
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2022) Weber, Louis; Webel, Johannes; Mücklich, Frank; Kraus, Tobias
    Particle number densities are a crucial parameter in the microstructure engineering of microalloyed steels. We introduce a new method to determine nanoscale precipitate number densities of macroscopic samples that is based on the matrix dissolution technique (MDT) and combine it with atom probe tomography (APT). APT counts precipitates in microscopic samples of niobium and niobium-titanium microalloyed steels. The new method uses MDT combined with analytical ultracentrifugation (AUC) of extracted precipitates, inductively coupled plasma–optical emission spectrometry, and APT. We compare the precipitate number density ranges from APT of 137.81 to 193.56 × 1021 m−3 for the niobium steel and 104.90 to 129.62 × 1021 m−3 for the niobium-titanium steel to the values from MDT of 2.08 × 1021 m−3 and 2.48 × 1021 m−3. We find that systematic errors due to undesired particle loss during extraction and statistical uncertainties due to the small APT volumes explain the differences. The size ranges of precipitates that can be detected via APT and AUC are investigated by comparison of the obtained precipitate size distributions with transmission electron microscopy analyses of carbon extraction replicas. The methods provide overlapping resulting ranges. MDT probes very large numbers of small particles but is limited by errors due to particle etching, while APT can detect particles with diameters below 10 nm but is limited by small-number statistics. The combination of APT and MDT provides comprehensive data which allows for an improved understanding of the interrelation between thermo-mechanical controlled processing parameters, precipitate number densities, and resulting mechanical-technological material properties. Graphical abstract: [Figure not available: see fulltext.]
  • Item
    Bending as Key Mechanism in the Tactile Perception of Fibrillar Surfaces
    (Weinheim : Wiley-VCH, 2021) Gedsun, Angelika; Sahli, Riad; Meng, Xing; Hensel, René; Bennewitz, Roland
    The touching of fibrillar surfaces elicits a broad range of affective reactions, which range from the adverse stinginess of a stiff bristle brush to the pleasant feel of velvet. To study the tactile perception of model fibrillar surfaces, a unique set of samples carrying dense, regular arrays of cylindrical microfibrils with high aspect ratio made from different elastomer materials have been created. Fibril length and material compliance are varied independently such that their respective influence on tactile perception can be elucidated. This work finds that the tactile perception of similarity between samples is dominated by bending of the fibrils under sliding touch. The results demonstrate that variations of material stiffness and of surface structure are not necessarily perceived independently by touch. In the case of fibrillar elastomer surfaces, it is rather the ratio of fibril length and storage modulus which determines fibril bending and becomes the dominant tactile dimension. Visual access to the sample during tactile exploration improves the tactile perception of fibril bendability. Experiments with colored samples show a distraction by color in participants’ decisions regarding tactile similarity only for yellow samples of outstanding brightness.
  • Item
    Increasing Antibacterial Efficiency of Cu Surfaces by targeted Surface Functionalization via Ultrashort Pulsed Direct Laser Interference Patterning
    (Weinheim : Wiley-VCH, 2020) Müller, Daniel W.; Lößlein, Sarah; Terriac, Emmanuel; Brix, Kristina; Siems, Katharina; Moeller, Ralf; Kautenburger, Ralf; Mücklich, Frank
    Copper (Cu) exhibits great potential for application in the design of antimicrobial contact surfaces aiming to reduce pathogenic contamination in public areas as well as clinically critical environments. However, current application perspectives rely purely on the toxic effect of emitted Cu ions, without considering influences on the interaction of pathogenic microorganisms with the surface to enhance antimicrobial efficiency. In this study, it is investigated on how antibacterial properties of Cu surfaces against Escherichia coli can be increased by tailored functionalization of the substrate surface by means of ultrashort pulsed direct laser interference patterning (USP-DLIP). Surface patterns in the scale range of single bacteria cells are fabricated to purposefully increase bacteria/surface contact area, while parallel modification of the surface chemistry allows to involve the aspect of surface wettability into bacterial attachment and the resulting antibacterial effectivity. The results exhibit a delicate interplay between bacterial adhesion and the expression of antibacterial properties, where a reduction of bacterial cell viability of up to 15-fold can be achieved for E. coli on USP-DLIP surfaces in comparison to smooth Cu surfaces. Thereby, it can be shown how the antimicrobial properties of copper surfaces can be additionally enhanced by targeted surface functionalization. © 2020 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH
  • Item
    Preventing Catastrophic Failure of Microfibrillar Adhesives in Compliant Systems Based on Statistical Analysis of Adhesive Strength
    (Washington, DC : ACS Publications, 2021) Hensel, René; Thiemecke, Jonathan; Booth, Jamie A.
    Adhesives based on fibrillar surface microstructures have shown great potential for handling applications requiring strong, reversible, and switchable adhesion. Recently, the importance of the statistical distribution of adhesive strength of individual fibrils in controlling the overall performance was revealed. Strength variations physically correspond to different interfacial defect sizes, which, among other factors, are related to surface roughness. For analysis of the strength distribution, Weibull's statistical theory of fracture was introduced. In this study, the importance of the statistical properties in controlling the stability of attachment is explored. Considering the compliance of the loading system, we develop a stability criterion based on the Weibull statistical parameters. It is shown that when the distribution in fibril adhesive strength is narrow, the global strength is higher but unstable detachment is more likely. Experimental variation of the loading system compliance for a specimen of differing statistical properties shows a transition to unstable detachment at low system stiffness, in good agreement with the theoretical stability map. This map serves to inform the design of gripper compliance, when coupled with statistical analysis of strength on the target surface of interest. Such a treatment could prevent catastrophic failure by spontaneous detachment of an object from an adhesive gripper. © 2021 The Authors. Published by American Chemical Society.
  • Item
    Microscopic Softening Mechanisms of an Ionic Liquid Additive in an Electrically Conductive Carbon-Silicone Composite
    (Weinheim : Wiley, 2022) Zhang, Long; Schmidt, Dominik S.; González‐García, Lola; Kraus, Tobias
    The microstructural changes caused by the addition of the ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide to polydimethylsiloxane (PDMS) elastomer composites filled with carbon black (CB) are analyzed to explain the electrical, mechanical, rheological, and optical properties of IL-containing precursors and composites. Swelling experiments and optical analysis indicate a limited solubility of the IL in the PDMS matrix that reduces the cross-linking density of PDMS both globally and locally, which reduces the Young's moduli of the composites. A rheological analysis of the precursor mixture shows that the IL reduces the strength of carbon–carbon and carbon–PDMS interactions, thus lowering the filler–matrix coupling and increasing the elongation at break. Electromechanical testing reveals a combination of reversible and irreversible piezoresistive responses that is consistent with the presence of IL at microscopic carbon–carbon interfaces, where it enables re-established electrical connections after stress release but reduces the absolute conductivity.
  • Item
    Unraveling the Electrochemical Mechanism in Tin Oxide/MXene Nanocomposites as Highly Reversible Negative Electrodes for Lithium-Ion Batteries
    (Weinheim : Wiley-VCH, 2023) Gentile, Antonio; Arnold, Stefanie; Ferrara, Chiara; Marchionna, Stefano; Tang, Yushu; Maibach, Julia; Kübel, Christian; Presser, Volker; Ruffo, Riccardo
    Lithium-ion batteries are constantly developing as the demands for power and energy storage increase. One promising approach to designing high-performance lithium-ion batteries is using conversion/alloying materials, such as SnO2. This class of materials does, in fact, present excellent performance and ease of preparation; however, it suffers from mechanical instabilities during cycling that impair its use. One way to overcome these problems is to prepare composites with bi-dimensional materials that stabilize them. Thus, over the past 10 years, two-dimensional materials with excellent transport properties (graphene, MXenes) have been developed that can be used synergistically with conversion materials to exploit both advantages. In this work, a 50/50 (by mass) SnO2/Ti3C2Tz nanocomposite is prepared and optimized as a negative electrode for lithium-ion batteries. The nanocomposite delivers over 500 mAh g−1 for 700 cycles at 0.1 A g−1 and demonstrates excellent rate capability, with 340 mAh g−1 at 8 A g−1. These results are due to the synergistic behavior of the two components of the nanocomposite, as demonstrated by ex situ chemical, structural, and morphological analyses. This knowledge allows, for the first time, to formulate a reaction mechanism with lithium-ions that provides partial reversibility of the conversion reaction with the formation of SnO.
  • Item
    Tuning the Release Force of Microfibrillar Adhesives by Geometric Design
    (Weinheim : Wiley-VCH, 2022) Barnefske, Lena; Rundel, Fabian; Moh, Karsten; Hensel, René; Zhang, Xuan; Arzt, Eduard
    Switchable micropatterned adhesives exhibit high potential as novel resource-efficient grippers in future pick-and-place systems. In contrast with the adhesion acting during the “pick” phase, the release during the “place” phase has received little research attention so far. For objects smaller than typically 1 mm, release may become difficult as gravitational and inertial forces are no longer sufficient to allow shedding of the object. A compressive overload can initiate release by elastic buckling of the fibrils, but the switching ratio (ratio between high and low adhesion force) is typically only 2–3. In this work, new microfibrillar designs are reported exhibiting directional buckling with high switching ratios in the order of 20. Their functionality is illustrated by in situ optical observation of the contact signatures. Such micropatterns can enable the successful release of small objects with high placement accuracy.
  • Item
    Sliding Mechanism for Release of Superlight Objects from Micropatterned Adhesives
    (Weinheim : Wiley-VCH, 2022) Wang, Yue; Zhang, Xuan; Hensel, René; Arzt, Eduard
    Robotic handling and transfer printing of micrometer-sized superlight objects is a crucial technology in industrial fabrication. In contrast to the precise gripping with micropatterned adhesives, the reliable release of superlight objects with negligible weight is a great challenge. Slanted deformable polymer microstructures, with typical pillar cross-section 150 µm × 50 µm, are introduced with various tilt angles that enable a reduction of adhesion by a switching ratio of up to 500. The experiments demonstrate that the release from a smooth surface involves sliding of the contact during compression and subsequent peeling of the object during retraction. The handling of a 0.5 mg perfluorinated polymer micro-object with high accuracy in repeated pick-and-place cycles is demonstrated. Based on beam theory, the forces and moments acting at the tip of the microstructure are analyzed. As a result, an expression for the pull-off force is proposed as a function of the sliding distance and a guide to an optimized design for these release structures is provided.
  • Item
    Layered Nano‐Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution
    (Weinheim : Wiley-VCH, 2022) Husmann, Samantha; Torkamanzadeh, Mohammad; Liang, Kun; Majed, Ahmad; Dun, Chaochao; Urban, Jeffrey J.; Naguib, Michael; Presser, Volker
    MXene-transition metal dichalcogenide (TMD) heterostructures are synthesized through a one-step heat treatment of Nb2C and Nb4C3. These MXenes are used without delamination or any pre-treatment. Heat treatments accomplish the sacrificial transformation of these MXenes into TMD (NbS2) at 700 and 900 °C under H2S. This work investigates, for the first time, the role of starting MXene phase in the derivative morphology. It is shown that while treatment of Nb2C at 700 °C leads to the formation of pillar-like structures on the parent MXene, Nb4C3 produces nano-mosaic layered NbS2. At 900 °C, both MXene phases, of the same transition metal, fully convert into nano-mosaic layered NbS2 preserving the parent MXene's layered morphology. When tested as electrodes for hydrogen evolution reaction, Nb4C3-derived hybrids show better performance than Nb2C derivatives. The Nb4C3-derived heterostructure exhibits a low overpotential of 198 mV at 10 mA cm−2 and a Tafel slope of 122 mV dec−1, with good cycling stability in an acidic electrolyte.