Search Results

Now showing 1 - 10 of 62
Loading...
Thumbnail Image
Item

A Dual-Mode Surface Acoustic Wave Delay Line for the Detection of Ice on 64°-Rotated Y-Cut Lithium Niobate

2024, Schulmeyer, Philipp, Weihnacht, Manfred, Schmidt, Hagen

Ice accumulation on infrastructure poses severe safety risks and economic losses, necessitating effective detection and monitoring solutions. This study introduces a novel approach employing surface acoustic wave (SAW) sensors, known for their small size, wireless operation, energy self-sufficiency, and retrofit capability. Utilizing a SAW dual-mode delay line device on a 64°-rotated Y-cut lithium niobate substrate, we demonstrate a solution for combined ice detection and temperature measurement. In addition to the shear-horizontal polarized leaky SAW, our findings reveal an electrically excitable Rayleigh-type wave in the X+90° direction on the same cut. Experimental results in a temperature chamber confirm capability for reliable differentiation between liquid water and ice loading and simultaneous temperature measurements. This research presents a promising advancement in addressing safety concerns and economic losses associated with ice accretion.

Loading...
Thumbnail Image
Item

A New Family of Layered Metal-Organic Semiconductors: Cu/V-Organophosphonates

2023, Tholen, Patrik, Wagner, Lukas, Ruthes, Jean G. A., Siemensmeyer, Konrad, Beglau, Thi Hai Yen, Muth, Dominik, Zorlu, Yunus, Okutan, Mustafa, Goldschmidt, Jan Christoph, Janiak, Christoph, Presser, Volker, Yavuzçetin, Özgür, Yücesan, Gündoğ

Herein, we report the design and synthesis of a layered redox-active, antiferromagnetic metal organic semiconductor crystals with the chemical formula [Cu(H2O)2V(µ-O)(PPA)2] (where PPA is phenylphosphonate). The crystal structure of [Cu(H2O)2V(µ-O)(PPA)2] shows that the metal phosphonate layers are separated by phenyl groups of the phenyl phosphonate linker. Tauc plotting of diffuse reflectance spectra indicates that [Cu(H2O)2V(µ-O)(PPA)2] has an indirect band gap of 2.19 eV. Photoluminescence (PL) spectra indicate a complex landscape of energy states with PL peaks at 1.8 and 2.2 eV. [Cu(H2O)2V(µ-O)(PPA)2] has estimated hybrid ionic and electronic conductivity values between 0.13 and 0.6 S m−1. Temperature-dependent magnetization measurements show that [Cu(H2O)2V(µ-O)(PPA)2] exhibits short range antiferromagnetic order between Cu(II) and V(IV) ions. [Cu(H2O)2V(µ-O)(PPA)2] is also photoluminescent with photoluminescence quantum yield of 0.02%. [Cu(H2O)2V(µ-O)(PPA)2] shows high electrochemical, and thermal stability.

Loading...
Thumbnail Image
Item

Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR)

2020, Erler, Alexander, Riebe, Daniel, Beitz, Toralf, Löhmannsröben, Hans-Gerd, Gebbers, Robin

Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated.

Loading...
Thumbnail Image
Item

Switching Propulsion Mechanisms of Tubular Catalytic Micromotors

2021, Wrede, Paul, Medina-Sánchez, Mariana, Fomin, Vladimir M., Schmidt, Oliver G.

Different propulsion mechanisms have been suggested for describing the motion of a variety of chemical micromotors, which have attracted great attention in the last decades due to their high efficiency and thrust force, enabling several applications in the fields of environmental remediation and biomedicine. Bubble-recoil based motion, in particular, has been modeled by three different phenomena: capillary forces, bubble growth, and bubble expulsion. However, these models have been suggested independently based on a single influencing factor (i.e., viscosity), limiting the understanding of the overall micromotor performance. Therefore, the combined effect of medium viscosity, surface tension, and fuel concentration is analyzed on the micromotor swimming ability, and the dominant propulsion mechanisms that describe its motion more accurately are identified. Using statistically relevant experimental data, a holistic theoretical model is proposed for bubble-propelled tubular catalytic micromotors that includes all three above-mentioned phenomena and provides deeper insights into their propulsion physics toward optimized geometries and experimental conditions.

Loading...
Thumbnail Image
Item

In-Situ Measurement of Fresh Produce Respiration Using a Modular Sensor-Based System

2020, Keshri, Nandita, Truppel, Ingo, Herppich, Werner B., Geyer, Martin, Weltzien, Cornelia, Mahajan, Pramod V

In situ, continuous and real-time monitoring of respiration (R) and respiratory quotient (RQ) are crucial for identifying the optimal conditions for the long-term storage of fresh produce. This study reports the application of a gas sensor (RMS88) and a modular respirometer for in situ real-time monitoring of gas concentrations and respiration rates of strawberries during storage in a lab-scale controlled atmosphere chamber (190 L) and of Pinova apples in a commercial storage facility (170 t). The RMS88 consisted of wireless O2 (0% to 25%) and CO2 sensors (0% to 0.5% and 0% to 5%). The modular respirometer (3.3 L for strawberries and 7.4 L for apples) consisted of a leak-proof arrangement with a water-containing base plate and a glass jar on top. Gas concentrations were continuously recorded by the RMS88 at regular intervals of 1 min for strawberries and 5 min for apples and, in real-time, transferred to a terminal program to calculate respiration rates ( RO2 and RCO2 ) and RQ. Respiration measurement was done in cycles of flushing and measurement period. A respiration measurement cycle with a measurement period of 2 h up to 3 h was shown to be useful for strawberries under air at 10 °C. The start of anaerobic respiration of strawberries due to low O2 concentration (1%) could be recorded in real-time. RO2 and RCO2 of Pinova apples were recorded every 5 min during storage and mean values of 1.6 and 2.7 mL kg−1 h−1, respectively, were obtained when controlled atmosphere (CA) conditions (2% O2, 1.3% CO2 and 2 °C) were established. The modular respirometer was found to be useful for in situ real-time monitoring of respiration rate during storage of fresh produce and offers great potential to be incorporated into RQ-based dynamic CA storage system.

Loading...
Thumbnail Image
Item

Photonic contact thermometry using silicon ring resonators and tuneable laser-based spectroscopy

2021, Eisermann, René, Krenek, Stephan, Winzer, Georg, Rudtsch, Steffen

Photonic sensors offer the possibility of purely optical measurement in contact thermometry. In this work, silicon-based ring resonators were used for this purpose. These can be manufactured with a high degree of reproducibility and uniformity due to the established semiconductor manufacturing process. For the precise characterisation of these photonic sensors, a measurement setup was developed which allows laser-based spectroscopy around 1550 nm and stable temperature control from 5 °C to 95 °C. This was characterised in detail and the resulting uncertainty influences of both the measuring set-up and the data processing were quantified. The determined temperature stability at 20 °C is better than 0.51 mK for the typical acquisition time of 10 s for a 100 nm spectrum. For a measurement of >24 h at 30 °C a standard deviation of 2.6 mK could be achieved. A hydrogen cyanide reference gas cell was used for traceable in-situ correction of the wavelength. The determined correction function has a typical uncertainty of 0.6 pm. The resonance peaks of the ring resonators showed a high optical quality of 157 000 in the average with a filter depth of up to 20 dB in the wavelength range from 1525 nm to 1565 nm. When comparing different methods for the determination of the central wavelength of the resonance peaks, an uncertainty of 0.3 pm could be identified. A temperature-dependent shift of the resonance peaks of approx. 72 pm/K was determined. This temperature sensitivity leads together with the analysed uncertainty contributions to a repeatability of better than 10 mK in the analysed temperature range from 10 °C to 90 °C.

Loading...
Thumbnail Image
Item

Direct Measurements of the Volume Flow Rate and Emissions in a Large Naturally Ventilated Building

2020, Janke, David, Yi, Qianying, Thormann, Lars, Hempel, Sabrina, Amon, Barbara, Nosek, Štepán, van Overbeke, Philippe, Amon, Thomas

The direct measurement of emissions from naturally ventilated dairy barns is challenging due to their large openings and the turbulent and unsteady airflow at the inlets and outlets. The aim of this study was to quantify the impacts of the number and positions of sensors on the estimation of volume flow rate and emissions. High resolution measurements of a naturally ventilated scaled building model in an atmospheric boundary layer wind tunnel were done. Tracer gas was released inside the model and measured at the outlet area, using a fast flame ionization detector (FFID). Additionally, the normal velocity on the area was measured using laser Doppler anemometry (LDA). In total, for a matrix of 65 × 4 sensor positions, the mean normal velocities and the mean concentrations were measured and used to calculate the volume flow rate and the emissions. This dataset was used as a reference to assess the accuracy while systematically reducing the number of sensors and varying the positions of them. The results showed systematic errors in the emission estimation up to +97%, when measurements of concentration and velocity were done at one constant height. This error could be lowered under 5%, when the concentrations were measured as a vertical composite sample.

Loading...
Thumbnail Image
Item

Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices

2022, Chaerony Siffa, Ihda, Gerling, Torsten, Masur, Kai, Eschenburg, Christian, Starkowski, Frank, Emmert, Steffen

The emerging use of low-temperature plasma in medicine, especially in wound treatment, calls for a better way of documenting the treatment parameters. This paper describes the development of a mobile sensory device (referred to as MSD) that can be used during the treatment to ease the documentation of important parameters in a streamlined process. These parameters include the patient’s general information, plasma source device used in the treatment, plasma treatment time, ambient humidity and temperature. MSD was developed as a standalone Raspberry Pi-based version and attachable module version for laptops and tablets. Both versions feature a user-friendly GUI, temperature–humidity sensor, microphone, treatment report generation and export. For the logging of plasma treatment time, a sound-based plasma detection system was developed, initially for three medically certified plasma source devices: kINPen® MED, plasma care®, and PlasmaDerm® Flex. Experimental validation of the developed detection system shows accurate and reliable detection is achievable at 5 cm measurement distance in quiet and noisy environments for all devices. All in all, the developed tool is a first step to a more automated, integrated, and streamlined approach of plasma treatment documentation that can help prevent user variability.

Loading...
Thumbnail Image
Item

In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers

2020, Mendes, Rafael Gregorio, Ta, Huy Quang, Yang, Xiaoqin, Li, Wei, Bachmatiuk, Alicja, Choi, Jin-Ho, Gemming, Thomas, Anasori, Babak, Lijun, Liu, Fu, Lei, Liu, Zhongfan, Rümmeli, Mark Hermann

Since the advent of monolayered 2D transition metal carbide and nitrides (MXenes) in 2011, the number of different monolayer systems and the study thereof have been on the rise. Mo2Ti2C3 is one of the least studied MXenes and new insights to this material are of value to the field. Here, the stability of Mo2Ti2C3 under electron irradiation is investigated. A transmission electron microscope (TEM) is used to study the structural and elemental changes in situ. It is found that Mo2Ti2C3 is reasonably stable for the first 2 min of irradiation. However, structural changes occur thereafter, which trigger increasingly rapid and significant rearrangement. This results in the formation of pores and two new nanomaterials, namely, N-doped graphene membranes and Mo nanoribbons. The study provides insight into the stability of Mo2Ti2C3 monolayers against electron irradiation, which will allow for reliable future study of the material using TEM. Furthermore, these findings will facilitate further research in the rapidly growing field of electron beam driven chemistry and engineering of nanomaterials. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Advanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light

2020, Wolff, Niklas, Ciobanu, Vladimir, Enachi, Mihail, Kamp, Marius, Braniste, Tudor, Duppel, Viola, Shree, Sindu, Raevschi, Simion, Medina-Sánchez, Mariana, Adelung, Rainer, Schmidt, Oliver G., Kienle, Lorenz, Tiginyanu, Ion

The development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1– xZnx)(N1– xOx) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim