Search Results

Now showing 1 - 10 of 16
  • Item
    A Flashback on Control Logic Injection Attacks against Programmable Logic Controllers
    (Basel : MDPI, 2022) Alsabbagh, Wael; Langendörfer, Peter
    Programmable logic controllers (PLCs) make up a substantial part of critical infrastructures (CIs) and industrial control systems (ICSs). They are programmed with a control logic that defines how to drive and operate critical processes such as nuclear power plants, petrochemical factories, water treatment systems, and other facilities. Unfortunately, these devices are not fully secure and are prone to malicious threats, especially those exploiting vulnerabilities in the control logic of PLCs. Such threats are known as control logic injection attacks. They mainly aim at sabotaging physical processes controlled by exposed PLCs, causing catastrophic damage to target systems as shown by Stuxnet. Looking back over the last decade, many research endeavors exploring and discussing these threats have been published. In this article, we present a flashback on the recent works related to control logic injection attacks against PLCs. To this end, we provide the security research community with a new systematization based on the attacker techniques under three main attack scenarios. For each study presented in this work, we overview the attack strategies, tools, security goals, infected devices, and underlying vulnerabilities. Based on our analysis, we highlight the current security challenges in protecting PLCs from such severe attacks and suggest security recommendations for future research directions.
  • Item
    Dielectrophoresis: An Approach to Increase Sensitivity, Reduce Response Time and to Suppress Nonspecific Binding in Biosensors?
    (Basel : MDPI, 2022) Henriksson, Anders; Neubauer, Peter; Birkholz, Mario
    The performance of receptor-based biosensors is often limited by either diffusion of the analyte causing unreasonable long assay times or a lack of specificity limiting the sensitivity due to the noise of nonspecific binding. Alternating current (AC) electrokinetics and its effect on biosensing is an increasing field of research dedicated to address this issue and can improve mass transfer of the analyte by electrothermal effects, electroosmosis, or dielectrophoresis (DEP). Accordingly, several works have shown improved sensitivity and lowered assay times by order of magnitude thanks to the improved mass transfer with these techniques. To realize high sensitivity in real samples with realistic sample matrix avoiding nonspecific binding is critical and the improved mass transfer should ideally be specific to the target analyte. In this paper we cover recent approaches to combine biosensors with DEP, which is the AC kinetic approach with the highest selectivity. We conclude that while associated with many challenges, for several applications the approach could be beneficial, especially if more work is dedicated to minimizing nonspecific bindings, for which DEP offers interesting perspectives.
  • Item
    Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells
    (Basel : MDPI, 2020) Persichetti, Luca; Montanari, Michele; Ciano, Chiara; Di Gaspare, Luciana; Ortolani, Michele; Baldassarre, Leonetta; Zoellner, Marvin; Mukherjee, Samik; Moutanabbir, Oussama; Capellini, Giovanni; Virgilio, Michele; De Seta, Monica
    n-type Ge/SiGe asymmetric coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spectroscopic experiments on 20-module superstructures, each featuring two Ge wells coupled through a Ge-rich SiGe tunnel barrier, as a function of the geometry parameters of the design and the P dopant concentration. Through a comparison of THz spectroscopic data with numerical calculations of intersubband optical absorption resonances, we demonstrated that it is possible to tune, by design, the energy and the spatial overlap of quantum confined subbands in the conduction band of the heterostructures. The high structural/interface quality of the samples and the control achieved on subband hybridization are promising starting points towards a working electrically pumped light-emitting device. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Separation, characterization, and handling of microalgae by dielectrophoresis
    (Basel : MDPI, 2020) Abt, Vinzenz; Gringel, Fabian; Han, Arum; Neubauer, Peter; Birkholz, Mario
    Microalgae biotechnology has a high potential for sustainable bioproduction of diverse highvalue biomolecules. Some of the main bottlenecks in cell-based bioproduction, and more specifically in microalgae-based bioproduction, are due to insufficient methods for rapid and efficient cell characterization, which contributes to having only a few industrially established microalgal species in commercial use. Dielectrophoresis-based microfluidic devices have been long established as promising tools for label-free handling, characterization, and separation of broad ranges of cells. The technique is based on differences in dielectric properties and sizes, which results in different degrees of cell movement under an applied inhomogeneous electrical field. The method has also earned interest for separating microalgae based on their intrinsic properties, since their dielectric properties may significantly change during bioproduction, in particular for lipid-producing species. Here, we provide a comprehensive review of dielectrophoresis-based microfluidic devices that are used for handling, characterization, and separation of microalgae. Additionally, we provide a perspective on related areas of research in cell-based bioproduction that can benefit from dielectrophoresis-based microdevices. This work provides key information that will be useful for microalgae researchers to decide whether dielectrophoresis and which method is most suitable for their particular application. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition
    (Basel : MDPI, 2022) Franck, Max; Dabrowski, Jaroslaw; Schubert, Markus Andreas; Wenger, Christian; Lukosius, Mindaugas
    The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10−7–10−3 mbar and 900–980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2–3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3–10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth.
  • Item
    Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing
    (Basel : MDPI, 2021) Pérez, Eduardo; Pérez-Ávila, Antonio Javier; Romero-Zaliz, Rocío; Mahadevaiah, Mamathamba Kalishettyhalli; Pérez-Bosch Quesada, Emilio; Roldán, Juan Bautista; Jiménez-Molinos, Francisco; Wenger, Christian
    Accomplishing multi-level programming in resistive random access memory (RRAM) arrays with truly discrete and linearly spaced conductive levels is crucial in order to implement synaptic weights in hardware-based neuromorphic systems. In this paper, we implemented this feature on 4-kbit 1T1R RRAM arrays by tuning the programming parameters of the multi-level incremental step pulse with verify algorithm (M-ISPVA). The optimized set of parameters was assessed by comparing its results with a non-optimized one. The optimized set of parameters proved to be an effective way to define non-overlapped conductive levels due to the strong reduction of the device-to-device variability as well as of the cycle-to-cycle variability, assessed by inter-levels switching tests and during 1 k reset-set cycles. In order to evaluate this improvement in real scenarios, the experimental characteristics of the RRAM devices were captured by means of a behavioral model, which was used to simulate two different neuromorphic systems: an 8 × 8 vector-matrix-multiplication (VMM) accelerator and a 4-layer feedforward neural network for MNIST database recognition. The results clearly showed that the optimization of the programming parameters improved both the precision of VMM results as well as the recognition accuracy of the neural network in about 6% compared with the use of non-optimized parameters.
  • Item
    Novel Functionalities of Smart Home Devices for the Elastic Energy Management Algorithm
    (Basel : MDPI, 2022) Powroźnik, Piotr; Szcześniak, Paweł; Sobolewski, Łukasz; Piotrowski, Krzysztof
    Energy management in power systems is influenced by such factors as economic and ecological aspects. Increasing the use of electricity produced at a given time from renewable energy sources (RES) by employing the elastic energy management algorithm will allow for an increase in “green energy“ in the energy sector. At the same time, it can reduce the production of electricity from fossil fuels, which is a positive economic aspect. In addition, it will reduce the volume of energy from RES that have to be stored using expensive energy storage or sent to other parts of the grid. The model parameters proposed in the elastic energy management algorithm are discussed. In particular, attention is paid to the time shift, which allows for the acceleration or the delay in the start-up of smart appliances. The actions taken by the algorithm are aimed at maintaining a compromise between the user’s comfort and the requirements of distribution network operators. Establishing the value of the time shift parameter is based on GMDH neural networks and the regression method. In the simulation studies, the extension of selected activities related to the tasks performed in households and its impact on the user’s comfort as well as the response to the increased generation of energy from renewable energy sources have been verified by the simulation research presented in this article. The widespread use of the new functionalities of smart appliance devices together with the elastic energy management algorithm is planned for the future. Such a combination of hardware and software will enable more effective energy management in smart grids, which will be part of national power systems.
  • Item
    Electron Population Dynamics in Optically Pumped Asymmetric Coupled Ge/SiGe Quantum Wells: Experiment and Models
    (Basel : MDPI, 2020) Ciano, Chiara; Virgilio, Michele; Bagolini, Luigi; Baldassarre, Leonetta; Rossetti, Andrea; Pashkin, Alexej; Helm, Manfred; Montanari, Michele; Persichetti, Luca; Di Gaspare, Luciana; Capellini, Giovanni; Paul, Douglas J.; Scalari, Giacomo; Faist, Jèrome; De Seta, Monica; Ortolani, Michele
    n-type doped Ge quantum wells with SiGe barriers represent a promising heterostructure system for the development of radiation emitters in the terahertz range such as electrically pumped quantum cascade lasers and optically pumped quantum fountain lasers. The nonpolar lattice of Ge and SiGe provides electron-phonon scattering rates that are one order of magnitude lower than polar GaAs. We have developed a self-consistent numerical energy-balance model based on a rate equation approach which includes inelastic and elastic inter-and intra-subband scattering events and takes into account a realistic two-dimensional electron gas distribution in all the subband states of the Ge/SiGe quantum wells by considering subband-dependent electronic temperatures and chemical potentials. This full-subband model is compared here to the standard discrete-energy-level model, in which the material parameters are limited to few input values (scattering rates and radiative cross sections). To provide an experimental case study, we have epitaxially grown samples consisting of two asymmetric coupled quantum wells forming a three-level system, which we optically pump with a free electron laser. The benchmark quantity selected for model testing purposes is the saturation intensity at the 1!3 intersubband transition. The numerical quantum model prediction is in reasonable agreement with the experiments and therefore outperforms the discrete-energy-level analytical model, of which the prediction of the saturation intensity is off by a factor 3. © 2019 by the authors.
  • Item
    Modulating the Filamentary-Based Resistive Switching Properties of HfO2 Memristive Devices by Adding Al2O3 Layers
    (Basel : MDPI, 2022) Kalishettyhalli Mahadevaiah, Mamathamba; Perez, Eduardo; Lisker, Marco; Schubert, Markus Andreas; Perez-Bosch Quesada, Emilio; Wenger, Christian; Mai, Andreas
    The resistive switching properties of HfO2 based 1T-1R memristive devices are electrically modified by adding ultra-thin layers of Al2 O3 into the memristive device. Three different types of memristive stacks are fabricated in the 130 nm CMOS technology of IHP. The switching properties of the memristive devices are discussed with respect to forming voltages, low resistance state and high resistance state characteristics and their variabilities. The experimental I–V characteristics of set and reset operations are evaluated by using the quantum point contact model. The properties of the conduction filament in the on and off states of the memristive devices are discussed with respect to the model parameters obtained from the QPC fit.
  • Item
    Resilience in the Cyberworld: Definitions, Features and Models
    (Basel : MDPI, 2021) Vogel, Elisabeth; Dyka, Zoya; Klann, Dan; Langendörfer, Peter
    Resilience is a feature that is gaining more and more attention in computer science and computer engineering. However, the definition of resilience for the cyber landscape, especially embedded systems, is not yet clear. This paper discusses definitions provided by different authors, on different years and with different application areas the field of computer science/computer engineering. We identify the core statements that are more or less common to the majority of the definitions, and based on this we give a holistic definition using attributes for (cyber-) resilience. In order to pave a way towards resilience engineering, we discuss a theoretical model of the life cycle of a (cyber-) resilient system that consists of key actions presented in the literature. We adapt this model for embedded (cyber-) resilient systems.