Search Results

Now showing 1 - 4 of 4
  • Item
    A review of coarse mineral dust in the Earth system
    (Amsterdam [u.a.] : Elsevier, 2022) Adebiyi, Adeyemi; Kok, Jasper F.; Murray, Benjamin J.; Ryder, Claire L.; Stuut, Jan-Berend W.; Kahn, Ralph A.; Knippertz, Peter; Formenti, Paola; Mahowald, Natalie M.; Pérez García-Pando, Carlos; Klose, Martina; Ansmann, Albert; Samset, Bjørn H.; Ito, Akinori; Balkanski, Yves; Di Biagio, Claudia; Romanias, Manolis N.; Huang, Yue; Meng, Jun
    Mineral dust particles suspended in the atmosphere span more than three orders of magnitude in diameter, from <0.1 µm to more than 100 µm. This wide size range makes dust a unique aerosol species with the ability to interact with many aspects of the Earth system, including radiation, clouds, hydrology, atmospheric chemistry, and biogeochemistry. This review focuses on coarse and super-coarse dust aerosols, which we respectively define as dust particles with a diameter of 2.5–10 µm and 10–62.5 µm. We review several lines of observational evidence indicating that coarse and super-coarse dust particles are transported farther than previously expected and that the abundance of these particles is substantially underestimated in current global models. We synthesize previous studies that used observations, theories, and model simulations to highlight the impacts of coarse and super-coarse dust aerosols on the Earth system, including their effects on dust-radiation interactions, dust-cloud interactions, atmospheric chemistry, and biogeochemistry. Specifically, coarse and super-coarse dust aerosols produce a net positive direct radiative effect (warming) at the top of the atmosphere and can modify temperature and water vapor profiles, influencing the distribution of clouds and precipitation. In addition, coarse and super-coarse dust aerosols contribute a substantial fraction of ice-nucleating particles, especially at temperatures above –23 °C. They also contribute a substantial fraction to the available reactive surfaces for atmospheric processing and the dust deposition flux that impacts land and ocean biogeochemistry by supplying important nutrients such as iron and phosphorus. Furthermore, we examine several limitations in the representation of coarse and super-coarse dust aerosols in current model simulations and remote-sensing retrievals. Because these limitations substantially contribute to the uncertainties in simulating the abundance and impacts of coarse and super-coarse dust aerosols, we offer some recommendations to facilitate future studies. Overall, we conclude that an accurate representation of coarse and super-coarse properties is critical in understanding the impacts of dust aerosols on the Earth system.
  • Item
    Size, concentration, and origin of human exhaled particles and their dependence on human factors with implications on infection transmission
    (Amsterdam [u.a.] : Elsevier, 2022) Bagheri, Gholamhossein; Schlenczek, Oliver; Turco, Laura; Thiede, Birte; Stieger, Katja; Kosub, Jana M.; Clauberg, Sigrid; Pöhlker, Mira L.; Pöhlker, Christopher; Moláček, Jan; Scheithauer, Simone; Bodenschatz, Eberhard
    Understanding infection transmission between individuals, as well as evaluating the efficacy of protective measures, are key issues in pandemics driven by human respiratory particles. The key is a quantitative understanding of the size and concentration of particles exhaled and their variability across the size range for a representative population of all ages, genders, and different activities. Here we present data from 132 healthy volunteers aged 5 to 80 years, measured over the entire particle size range for each individual. Conventional particle spectrometry was combined with in-line holography under well-controlled conditions for common activities such as breathing, speaking, singing, and shouting. We find age to be the most important parameter for the concentration of small exhale particles <5 µm (PM5), which doubles over a 7-year period in adolescents and over a 30-year period in adults. Gender, body mass index, smoking or exercise habits have no discernible effect. We provide evidence that particles with a diameter of <5 µm originate from the lower respiratory tract, 5–15 µm from the larynx/pharynx, and >15 µm from the oral cavity. PM5 concentration can vary by one order of magnitude within a person, while inter-person variability can span two orders of magnitude, largely explained by difference in age. We found no discernible inter-person variability for particles larger than 5 µm. Our results show that cumulative volume of PM5 is 2–8 times higher in adults than in children. In contrast, number and volume concentration of larger particles, which are produced predominantly in the upper respiratory tract, is largely independent of age. Finally, we examined different types of airborne-transmissible respiratory diseases and provided insights into possible modes of infection transmission with and without several types/fits of face masks.
  • Item
    Modifications in aerosol physical, optical and radiative properties during heavy aerosol events over Dushanbe, Central Asia
    (Amsterdam [u.a.] : Elsevier, 2021) Rupakheti, Dipesh; Rupakheti, Maheswar; Yin, Xiufeng; Hofer, Julian; Rai, Mukesh; Hu, Yuling; Abdullaev, Sabur F.; Kang, Shichang
    The location of Central Asia, almost at the center of the global dust belt region, makes it susceptible for dust events. The studies on atmospheric impact of dust over the region are very limited despite the large area occupied by the region and its proximity to the mountain regions (Tianshan, Hindu Kush-Karakoram-Himalayas, and Tibetan Plateau). In this study, we analyse and explain the modification in aerosols’ physical, optical and radiative properties during various levels of aerosol loading observed over Central Asia utilizing the data collected during 2010–2018 at the AERONET station in Dushanbe, Tajikistan. Aerosol episodes were classified as strong anthropogenic, strong dust and extreme dust. The mean aerosol optical depth (AOD) during these three types of events was observed a factor of ~3, 3.5 and 6.6, respectively, higher than the mean AOD for the period 2010–2018. The corresponding mean fine-mode fraction was 0.94, 0.20 and 0.16, respectively, clearly indicating the dominance of fine-mode anthropogenic aerosol during the first type of events, whereas coarse-mode dust aerosol dominated during the other two types of events. This was corroborated by the relationships among various aerosol parameters (AOD vs. AE, and EAE vs. AAE, SSA and RRI). The mean aerosol radiative forcing (ARF) at the top of the atmosphere (ARFTOA), the bottom of the atmosphere (ARFBOA), and in the atmosphere (ARFATM) were −35 ± 7, −73 ± 16, and 38 ± 17 Wm−2 during strong anthropogenic events, −48 ± 12, −85 ± 24, and 37 ± 15 Wm−2 during strong dust event, and −68 ± 19, −117 ± 38, and 49 ± 21 Wm−2 during extreme dust events. Increase in aerosol loading enhanced the aerosol-induced atmospheric heating rate to 0.5–1.6 K day−1 (strong anthropogenic events), 0.4–1.9 K day−1 (strong dust events) and 0.8–2.7 K day−1 (extreme dust events). The source regions of air masses to Dushanbe during the onset of such events are also identified. Our study contributes to the understanding of dust and anthropogenic aerosols, in particular the extreme events and their disproportionally high radiative impacts over Central Asia.
  • Item
    On the feasibility of using open source solvers for the simulation of a turbulent air flow in a dairy barn
    (Amsterdam [u.a.] : Elsevier, 2020) Janke, David; Caiazzo, Alfonso; Ahmed, Naveed; Alia, Najib; Knoth, Oswald; Moreau, Baptiste; Wilbrandt, Ulrich; Willink, Dilya; Amon, Thomas; John, Volker
    Two transient open source solvers, OpenFOAM and ParMooN, and the commercial solver Ansys Fluent are assessed with respect to the simulation of the turbulent air flow inside and around a dairy barn. For this purpose, data were obtained in an experimental campaign at a 1:100 scaled wind tunnel model. All solvers used different meshes, discretization schemes, and turbulence models. The experimental data and numerical results agree well for time-averaged stream-wise and vertical-wise velocities. In particular, the air exchange was predicted with high accuracy by both open source solvers with relative differences less than 4% and by the commercial solver with a relative difference of 9% compared to the experimental results. With respect to the turbulent quantities, good agreements at the second (downwind) half of the barn inside and especially outside the barn could be achieved, where all codes accurately predicted the flow separation and, in many cases, the root-mean-square velocities. Deviations between simulations and experimental results regarding turbulent quantities could be observed in the first part of the barn. These deviations can be attributed to the utilization of roughness elements between inlet and barn in the experiment that were not modeled in the numerical simulations. Both open source solvers proved to be promising tools for the accurate prediction of time-dependent phenomena in an agricultural context, e.g., like the transport of particulate matter or pathogen-laden aerosols in and around agricultural buildings. © 2020 The Authors