Search Results

Now showing 1 - 5 of 5
  • Item
    DATAMAN: A global database of nitrous oxide and ammonia emission factors for excreta deposited by livestock and land-applied manure
    (Hoboken, NJ : Wiley, 2021) Beltran, Ignacio; van der Weerden, Tony J.; Alfaro, Marta A.; Amon, Barbara; de Klein, Cecile A. M.; Grace, Peter; Hafner, Sasha; Hassouna, Mélynda; Hutchings, Nicholas; Krol, Dominika J.; Leytem, April B.; Noble, Alasdair; Salazar, Francisco; Thorman, Rachel E.; Velthof, Gerard L.
    Nitrous oxide (N2 O), ammonia (NH3 ), and methane (CH4 ) emissions from the manure management chain of livestock production systems are important contributors to greenhouse gases (GHGs) and NH3 emitted by human activities. Several studies have evaluated manure-related emissions and associated key variables at regional, national, or continental scales. However, there have been few studies focusing on the drivers of these emissions using a global dataset. An international project was created (DATAMAN) to develop a global database on GHG and NH3 emissions from the manure management chain (housing, storage, and field) to identify key variables influencing emissions and ultimately to refine emission factors (EFs) for future national GHG inventories and NH3 emission reporting. This paper describes the "field" database that focuses on N2 O and NH3 EFs from land-applied manure and excreta deposited by grazing livestock. We collated relevant information (EFs, manure characteristics, soil properties, and climatic conditions) from published peer-reviewed research, conference papers, and existing databases. The database, containing 5,632 observations compiled from 184 studies, was relatively evenly split between N2 O and NH3 (56 and 44% of the EF values, respectively). The N2 O data were derived from studies conducted in 21 countries on five continents, with New Zealand, the United Kingdom, Kenya, and Brazil representing 86% of the data. The NH3 data originated from studies conducted in 17 countries on four continents, with the United Kingdom, Denmark, Canada, and The Netherlands representing 79% of the data. Wet temperate climates represented 90% of the total database. The DATAMAN field database is available at http://www.dataman.co.nz.
  • Item
    Ammonia and nitrous oxide emission factors for excreta deposited by livestock and land-applied manure
    (Hoboken, NJ : Wiley, 2021) van der Weerden, Tony J.; Noble, Alasdair; de Klein, Cecile A. M.; Hutchings, Nicholas; Thorman, Rachel E.; Alfaro, Marta A.; Amon, Barbara; Beltran, Ignacio; Grace, Peter; Hassouna, Mélynda; Krol, Dominika J.; Leytem, April B.; Salazar, Francisco; Velthof, Gerard L.
    Manure application to land and deposition of urine and dung by grazing animals are major sources of ammonia (NH3 ) and nitrous oxide (N2 O) emissions. Using data on NH3 and N2 O emissions following land-applied manures and excreta deposited during grazing, emission factors (EFs) disaggregated by climate zone were developed, and the effects of mitigation strategies were evaluated. The NH3 data represent emissions from cattle and swine manures in temperate wet climates, and the N2 O data include cattle, sheep, and swine manure emissions in temperate wet/dry and tropical wet/dry climates. The NH3 EFs for broadcast cattle solid manure and slurry were 0.03 and 0.24 kg NH3 -N kg-1 total N (TN), respectively, whereas the NH3 EF of broadcast swine slurry was 0.29. Emissions from both cattle and swine slurry were reduced between 46 and 62% with low-emissions application methods. Land application of cattle and swine manure in wet climates had EFs of 0.005 and 0.011 kg N2 O-N kg-1 TN, respectively, whereas in dry climates the EF for cattle manure was 0.0031. The N2 O EFs for cattle urine and dung in wet climates were 0.0095 and 0.002 kg N2 O-N kg-1 TN, respectively, which were three times greater than for dry climates. The N2 O EFs for sheep urine and dung in wet climates were 0.0043 and 0.0005, respectively. The use of nitrification inhibitors reduced emissions in swine manure, cattle urine/dung, and sheep urine by 45-63%. These enhanced EFs can improve national inventories; however, more data from poorly represented regions (e.g., Asia, Africa, South America) are needed.
  • Item
    Agricultural Monitoring Using Polarimetric Decomposition Parameters of Sentinel-1 Data
    (Basel : MDPI, 2021) Harfenmeister, Katharina; Itzerott, Sibylle; Weltzien, Cornelia; Spengler, Daniel
    The time series of synthetic aperture radar (SAR) data are commonly and successfully used to monitor the biophysical parameters of agricultural fields. Because, until now, mainly backscatter coefficients have been analysed, this study examines the potentials of entropy, anisotropy, and alpha angle derived from a dual-polarimetric decomposition of Sentinel-1 data to monitor crop development. The temporal profiles of these parameters are analysed for wheat and barley in the vegetation periods 2017 and 2018 for 13 fields in two test sites in Northeast Germany. The relation between polarimetric parameters and biophysical parameters observed in the field is investigated using linear and exponential regression models that are evaluated using the coefficient of determination (R2) and the root mean square error (RMSE). The performance of single regression models is furthermore compared to those of multiple regression models, including backscatter coefficients in VV and VH polarisation as well as polarimetric decomposition parameters entropy and alpha. Characteristic temporal profiles of entropy, anisotropy, and alpha reflecting the main phenological changes in plants as well as the meteorological differences between the two years are observed for both crop types. The regression models perform best for data from the phenological growth stages tillering to booting. The highest R2 values of the single regression models are reached for the plant height of wheat related to entropy and anisotropy with R2 values of 0.64 and 0.61, respectively. The multiple regression models of VH, VV, entropy, and alpha outperform single regression models in most cases. R2 values of multiple regression models of plant height (0.76), wet biomass (0.7), dry biomass (0.7), and vegetation water content (0.69) improve those of single regression models slightly by up to 0.05. Additionally, the RMSE values of the multiple regression models are around 10% lower compared to those of single regression models. The results indicate the capability of dual-polarimetric decomposition parameters in serving as meaningful input parameters for multiple regression models to improve the prediction of biophysical parameters. Additionally, their temporal profiles indicate phenological development dependent on meteorological conditions. Knowledge about biophysical parameter development and phenology is important for farmers to monitor crop growth variability during the vegetation period to adapt and to optimize field management.
  • Item
    Occupational health and safety in agriculture – a brief report on organization, legislation and support in selected European countries
    (Lublin : Institute of Agricultural Medicine, 2021) Jakob, Martina Carola; Santa, Dushica; Holte, Kari Anne; Sikkeland, Inger Johanne; Hilt, Bjorn; Lundqvist, Peter
    Introduction and objective: Agriculture and forestry are among the most dangerous professions in Europe, with a high level of accidents affecting the sustainability and viability of the sector. International conventions, EU directives and national legislation build the fundamental basis for prevention. The aim of the study is to describe and categorize national mechanisms of occupational safety and health (OSH) for agricultural workers in Europe, to assess the extent of implementing safety regulation, the body in charge, and to give examples of health and safety initiatives. Material and methods: Results of a questionnaire-survey on basic safety regulations on farms sent by e-mail to the representatives of 30 participating European countries in the context of the Sacurima COST action network (CA 16123) are presented. Due to the complexity, only selected countries are described in this study highlighting the regulative bodies, occupational health services or specific training offers, as well as the complexity of the mechanisms. Results: One of the most serious issues and deficits of EU OSH regulation is the exclusion of self-employed farmers who compose nearly 90% of the farming population. This leads to serious under-reporting of accidents, and because one of the most common measures for the performance of health and safety initiatives are the injury and ill health statistics, better registration systems are urgently needed in almost all countries as a basis for preventive efforts. Conclusions: The results of the study provide a basis for raising awareness about the current OSH systems in Europe, and the importance of developing sector specific OSH strategies. The proposed activities should assist in tackling high accident rates and poor occupational health for self-employed farmers.
  • Item
    Assessing the contribution of soil NOx emissions to European atmospheric pollution
    (Bristol : IOP Publ., 2021) Skiba, Ute; Medinets, Sergiy; Cardenas, Laura M.; Carnell, Edward John; Hutchings, Nick; Amon, Barbara
    Atmospheric NOx concentrations are declining steadily due to successful abatement strategies predominantly targeting combustion sources. On the European continent, total NOx emissions fell by 55% between 1990 and 2017, but only modest reductions were achieved from the agricultural sector; with 7.8% from 20 Eastern European countries and 19.1% from 22 Western European countries. Consequently, the share of agricultural NOx emissions for these 42 European countries have increased from 3.6% to 7.2%. These values are highly uncertain due to serious lack of studies from agricultural soils and manure management. The emission factor (EFNO 1.33%), currently used for calculating soil NOx emissions from European agricultural categories ‘N applied to soils’ and ‘manure management’ was evaluated here by including recently published data from temperate climate zones. The newly calculated EFNO (average 0.60%, 0.0625th%/0.5475th%, n = 65 studies) is not notably different from the current value, given the large uncertainties associated with the small pool of studies, and therefore continued use of EFNO (1.33%) is recommended until more data become available. An assessment of the contribution of agricultural and non-agricultural NOx sources found that of the 42 European countries, the 8 most populated countries achieved considerable reductions (1990–2017) from categories ‘non-agricultural sources’ (55%), ‘N applied to soils’ (43%) and ‘manure management’ (1.2%), compared to small reductions from the remaining 34 countries. Forests are also large sources of soil NOx. On average, emissions from Eastern European forests were 4 times larger than from ‘N applied agricultural soil’, whereas Western European NOx emissions from ‘N applied agricultural soil’ were two times larger than from forest soils. Given that non-agricultural sources of NOx continue to decline, soil related emissions from agriculture, forests and manure management become more important, and require rigorous investigation in order to improve atmospheric pollution forecasts.