Search Results

Now showing 1 - 3 of 3
  • Item
    Future heat stress to reduce people’s purchasing power
    (San Francisco, Ca. : PLOS, 2021) Kuhla, Kilian; Willner, Sven Norman; Otto, Christian; Wenz, Leonie; Levermann, Anders
    With increasing carbon emissions rising temperatures are likely to impact our economies and societies profoundly. In particular, it has been shown that heat stress can strongly reduce labor productivity. The resulting economic perturbations can propagate along the global supply network. Here we show, using numerical simulations, that output losses due to heat stress alone are expected to increase by about 24% within the next 20 years, if no additional adaptation measures are taken. The subsequent market response with rising prices and supply shortages strongly reduces the consumers’ purchasing power in almost all countries including the US and Europe with particularly strong effects in India, Brazil, and Indonesia. As a consequence, the producing sectors in many regions temporarily benefit from higher selling prices while decreasing their production in quantity, whereas other countries suffer losses within their entire national economy. Our results stress that, even though climate shocks may stimulate economic activity in some regions and some sectors, their unpredictability exerts increasing pressure on people’s livelihood.
  • Item
    Three step flow focusing enables image-based discrimination and sorting of late stage 1 Haematococcus pluvialis cells
    (San Francisco, Ca. : PLOS, 2021) Kraus, Daniel; Kleiber, Andreas; Ehrhardt, Enrico; Leifheit, Matthias; Horbert, Peter; Urban, Matthias; Gleichmann, Nils; Mayer, Guenter; Popp, Juergen; Henkel, Thomas
    Label-free and gentle separation of cell stages with desired target properties from mixed stage populations are a major research task in modern biotechnological cultivation process and optimization of micro algae. The reported microfluidic sorter system (MSS) allows the subsequent investigation of separated subpopulations. The implementation of a viability preserving MSS is shown for separation of late stage 1 Haematococcus pluvialis (HP) cells form a mixed stage population. The MSS combines a three-step flow focusing unit for aligning the cells in single file transportation mode at the center of the microfluidic channel with a pure hydrodynamic sorter structure for cell sorting. Lateral displacement of the cells into one of the two outlet channels is generated by piezo-actuated pump chambers. In-line decision making for sorting is based on a user-definable set of image features and properties. The reported MSS significantly increased the purity of target cells in the sorted population (94%) in comparison to the initial mixed stage population (19%).
  • Item
    Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?
    (San Francisco, Ca. : PLOS, 2019) Germer, Sonja; Kleidon, Axel
    The planning of the energy transition from fossil fuels to renewables requires estimates for how much electricity wind turbines can generate from the prevailing atmospheric conditions. Here, we estimate monthly ideal wind energy generation from datasets of wind speeds, air density and installed wind turbines in Germany and compare these to reported actual yields. Both yields were used in a statistical model to identify and quantify factors that reduced actual compared to ideal yields. The installed capacity within the region had no significant influence. Turbine age and park size resulted in significant yield reductions. Predicted yields increased from 9.1 TWh/a in 2000 to 58.9 TWh/a in 2014 resulting from an increase in installed capacity from 5.7 GW to 37.6 GW, which agrees very well with reported estimates for Germany. The age effect, which includes turbine aging and possibly other external effects, lowered yields from 3.6 to 6.7% from 2000 to 2014. The effect of park size decreased annual yields by 1.9% throughout this period. However, actual monthly yields represent on average only 73.7% of the ideal yields, with unknown causes. We conclude that the combination of ideal yields predicted from wind conditions with observed yields is suitable to derive realistic estimates of wind energy generation as well as realistic resource potentials. © 2019 Germer, Kleidon. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.