Search Results

Now showing 1 - 10 of 49
  • Item
    Femtosecond laser induced step-like structures inside transparent hydrogel due to laser induced threshold reduction
    (San Francisco, California, US : PLOS, 2019) Saerchen, Emanuel; Liedtke-Gruener, Susann; Kopp, Maximilian; Heisterkamp, Alexander; Lubatschowski, Holger; Ripken, Tammo
    In the area of laser material processing, versatile applications for cutting glasses and transparent polymers exist. However, parasitic effects such as the creation of step-like structures appear when laser cutting inside a transparent material. To date, these structures were only described empirically. This work establishes the physical and chemical mechanisms behind the observed effects and describes the influence of process and material parameters onto the creation of step-like structures in hydrogel, Dihydroxyethylmethacrylat (HEMA). By focusing laser pulses in HEMA, reduced pulse separation distance below 50 nm and rise in pulse energy enhances the creation of unintended step-like structures. Spatial resolved Raman-spectroscopy was used to measure the laser induced chemical modification, which results into a reduced breakdown threshold. The reduction in threshold influences the position of optical breakdown for the succeeding laser pulses and consequently leads to the step-like structures. Additionally, the experimental findings were supplemented with numerical simulations of the influence of reduced damage threshold onto the position of optical breakdown.
  • Item
    Molecular investigations on a chimeric strain of Staphylococcus aureus sequence type 80
    (San Francisco, California, US : PLOS, 2020) Gawlik, Darius; Ruppelt-Lorz, Antje; Müller, Elke; Reißig, Annett; Hotzel, Helmut; Braun, Sascha D.; Söderquist, Bo; Ziegler-Cordts, Albrecht; Stein, Claudia; Pletz, Mathias W.; Ehricht, Ralf; Monecke, Stefan
    A PVL-positive, methicillin-susceptible Staphylococcus aureus was cultured from pus from cervical lymphadenitis of a patient of East-African origin. Microarray hybridisation assigned the isolate to clonal complex (CC) 80 but revealed unusual features, including the presence of the ORF-CM14 enterotoxin homologue and of an ACME-III element as well as the absence of etD and edinB. The isolate was subjected to both, Illumina and Nanopore sequencing allowing characterisation of deviating regions within the strain´s genome. Atypical features of this strain were attributable to the presence of two genomic regions that originated from other S. aureus lineages and that comprised, respectively, 3% and 1.4% of the genome. One deviating region extended from walJ to sirB. It comprised ORF-CM14 and the ACME-III element. A homologous but larger fragment was also found in an atypical S. aureus CC1/ST567 strain whose lineage might have served as donor of this genomic region. This region itself is a chimera comprising fragments from CC1 as well as fragments of unknown origin. The other deviating region comprised the region from htsB to ecfA2, i.e., another 3% of the genome. It was very similar to CC1 sequences. Either this suggests an incorporation of CC1 DNA into the study strain, or alternatively a recombination event affecting “canonical” CC80. Thus, the study strain bears witness of several recombination events affecting supposedly core genomic genes. Although the exact mechanism is not yet clear, such chimerism seems to be an additional pathway in the evolution of S. aureus. This could facilitate also a transmission of virulence and resistance factors and therefore offer an additional evolutionary advantage.
  • Item
    Discovery of chitin in skeletons of non-verongiid Red Sea demosponges
    (San Francisco, California, US : PLOS, 2018) Ehrlich, Hermann; Shaala, Lamiaa A.; Youssef, Diaa T. A.; Żółtowska- Aksamitowska, Sonia; Tsurkan, Mikhail; Galli, Roberta; Meissner, Heike; Wysokowski, Marcin; Petrenko, Iaroslav; Tabachnick, Konstantin R.; Ivanenko, Viatcheslav N.; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil
    Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.
  • Item
    Impacts of climate change on agro-climatic suitability of major food crops in Ghana
    (San Francisco, California, US : PLOS, 2020) Chemura, Abel; Schauberger, Bernhard; Gornott, Christoph
    Climate change is projected to impact food production stability in many tropical countries through impacts on crop potential. However, without quantitative assessments of where, by how much and to what extent crop production is possible now and under future climatic conditions, efforts to design and implement adaptation strategies under Nationally Determined Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we used extreme gradient boosting, a machine learning approach to model the current climatic suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agronomically important variables. We then used multi-model future climate projections for the 2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict changes in the suitability range of these crops. We achieved a good model fit in determining suitability classes for all crops (AUC = 0.81–0.87). Precipitation-based factors are suggested as most important in determining crop suitability, though the importance is crop-specific. Under projected climatic conditions, optimal suitability areas will decrease for all crops except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12% under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana has optimal suitability for two crops, 2% for three crops with no area having optimal suitability for all the four crops. Under projected climatic conditions, areas with optimal suitability for two and three crops will decrease by 12% as areas having moderate and marginal conditions for multiple crops increase. We also found that although the distribution of multiple crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suitable for the south while groundnut and sorghum will be more suitable for the northern parts of Ghana under projected climatic conditions.
  • Item
    Response of the wood-decay fungus Schizophyllum commune to co-occurring microorganisms
    (San Francisco, California, US : PLOS, 2020) Krause, Katrin; Jung, Elke-Martina; Lindner, Julia; Hardiman, Imam; Petschner, Jessica; Madhavan, Soumya; Matthäus, Christian; Kai, Marco; Menezes, Riya Christina; Popp, Jürgen; Svatoš, Aleš; Kothe, Erika
    Microorganisms are constantly interacting in a given environment by a constant exchange of signaling molecules. In timber, wood-decay fungi will come into contact with other fungi and bacteria. In naturally bleached wood, dark, pigmented lines arising from confrontation of two fungi often hint at such interactions. The metabolites (and pigment) exchange was investigated using the lignicolous basidiomycete Schizophyllum commune, and co-occurring fungi and bacteria inoculated directly on sterilized wood, or on media. In interactions with competitive wood degrading fungi, yeasts or bacteria, different competition strategies and communication types were observed, and stress reactions, as well as competitor-induced enzymes or pigments were analyzed. Melanin, indole, flavonoids and carotenoids were shown to be induced in S. commune interactions. The induced genes included multi-copper oxidases lcc1, lcc2, mco1, mco2, mco3 and mco4, possibly involved in both pigment production and lignin degradation typical for wood bleaching by wood-decay fungi.
  • Item
    Guiding cell adhesion and motility by modulating cross-linking and topographic properties of microgel arrays
    (San Francisco, California, US : PLOS, 2021) Riegert, Janine; Töpel, Alexander; Schieren, Jana; Coryn, Renee; Dibenedetto, Stella; Braunmiller, Dominik; Zajt, Kamil; Schalla, Carmen; Rütten, Stephan; Zenke, Martin; Pich, Andrij; Sechi, Antonio; Blank, Kerstin G.
    Biomaterial-driven modulation of cell adhesion and migration is a challenging aspect of tissue engineering. Here, we investigated the impact of surface-bound microgel arrays with variable geometry and adjustable cross-linking properties on cell adhesion and migration. We show that cell migration is inversely correlated with microgel array spacing, whereas directionality increases as array spacing increases. Focal adhesion dynamics is also modulated by microgel topography resulting in less dynamic focal adhesions on surface-bound microgels. Microgels also modulate the motility and adhesion of Sertoli cells used as a model for cell migration and adhesion. Both focal adhesion dynamics and speed are reduced on microgels. Interestingly, Gas2L1, a component of the cytoskeleton that mediates the interaction between microtubules and microfilaments, is dispensable for the regulation of cell adhesion and migration on microgels. Finally, increasing microgel cross-linking causes a clear reduction of focal adhesion turnover in Sertoli cells. These findings not only show that spacing and rigidity of surface-grafted microgels arrays can be effectively used to modulate cell adhesion and motility of diverse cellular systems, but they also form the basis for future developments in the fields of medicine and tissue engineering.
  • Item
    Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection
    (San Francisco, California, US : PLOS, 2021) Mohamed, Hager; Clemen, Ramona; Freund, Eric; Lackmann, Jan-Wilm; Wende, Kristian; Connors, Jennifer; Haddad, Elias K.; Dampier, Will; Wigdahl, Brian; Miller, Vandana; Bekeschus, Sander; Krebs, Fred C.; Kashanchi, Fatah
    Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.
  • Item
    Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model
    (San Francisco, California, US : PLOS, 2016) Kluge, Susanne; Bekeschus, Sander; Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel; Yousfi, Mohammed
    Objective: So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods: Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results: For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion: The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.
  • Item
    Sutureless fixation of amniotic membrane for therapy of ocular surface disorders
    (San Francisco, California, US : PLOS, 2015) Kotomin, Ilya; Valtink, Monika; Hofmann, Kai; Frenzel, Annika; Morawietz, Henning; Werner, Carsten; Funk, Richard H. W.; Engelmann, Katrin; Taylor, Andrew W
    Amniotic membrane is applied to the diseased ocular surface to stimulate wound healing and tissue repair, because it releases supportive growth factors and cytokines. These effects fade within about a week after application, necessitating repeated application. Generally, amniotic membrane is fixed with sutures to the ocular surface, but surgical intervention at the inflamed or diseased site can be detrimental. Therefore, we have developed a system for the mounting of amniotic membrane between two rings for application to a diseased ocular surface without surgical intervention (sutureless amniotic membrane transplantation). With this system, AmnioClip, amniotic membrane can be applied like a large contact lens. First prototypes were tested in an experiment on oneself for wearing comfort. The final system was tested on 7 patients in a pilot study. A possible influence of the ring system on the biological effects of amniotic membrane was analyzed by histochemistry and by analyzing the expression of vascular endothelial growth factor-A (VEGF-A), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF 2) and pigment epithelium-derived factor (PEDF) from amniotic membranes before and after therapeutic application. The final product, AmnioClip, showed good tolerance and did not impair the biological effects of amniotic membrane. VEGF-A and PEDF mRNA was expressed in amniotic membrane after storage and mounting before transplantation, but was undetectable after a 7-day application period. Consequently, transplantation of amniotic membranes with AmnioClip provides a sutureless and hence improved therapeutic strategy for corneal surface disorders.
  • Item
    Typology of coastal urban vulnerability under rapid urbanization
    (San Francisco, California, US : PLOS, 2020) Sterze, Till; Lüdeke, Matthias K.B.; Walther, Carsten; Kok, Marcel T.; Sietz, Diana; Lucas, Paul L.
    Coastal areas are urbanizing at unprecedented rates, particularly in low- and middle-income countries. Combinations of long-standing and emerging problems in these urban areas generate vulnerability for human well-being and ecosystems alike. This baseline study provides a spatially explicit global systematization of these problems into typical urban vulnerability profiles for the year 2000 using largely sub-national data. Using 11 indicator datasets for urban expansion, urban population growth, marginalization of poor populations, government effectiveness, exposures and damages to climate-related extreme events, low-lying settlement, and wetlands prevalence, a cluster analysis reveals a global typology of seven clearly distinguishable clusters, or urban profiles of vulnerability. Each profile is characterized by a specific data-value combination of indicators representing mechanisms that generate vulnerability. Using 21 studies for testing the plausibility, we identify seven key profile-based vulnerabilities for urban populations, which are relevant in the context of global urbanization, expansion, and climate change. We show which urban coasts are similar in this regard. Sensitivity and exposure to extreme climate-related events, and government effectiveness, are the most important factors for the huge asymmetries of vulnerability between profiles. Against the background of underlying global trends we propose entry points for profile-based vulnerability reduction. The study provides a baseline for further pattern analysis in the rapidly urbanizing coastal fringe as data availability increases. We propose to explore socio-ecologically similar coastal urban areas as a basis for sharing experience and vulnerability-reducing measures among them.