Search Results

Now showing 1 - 10 of 22
  • Item
    Nano-biosupercapacitors enable autarkic sensor operation in blood
    ([London] : Nature Publishing Group UK, 2021) Lee, Yeji; Bandari, Vineeth Kumar; Li, Zhe; Medina-Sánchez, Mariana; Maitz, Manfred F.; Karnaushenko, Daniil; Tsurkan, Mikhail V; Karnaushenko, Dmitriy D.; Schmidt, Oliver G.
    Today’s smallest energy storage devices for in-vivo applications are larger than 3 mm3 and lack the ability to continuously drive the complex functions of smart dust electronic and microrobotic systems. Here, we create a tubular biosupercapacitor occupying a mere volume of 1/1000 mm3 (=1 nanoliter), yet delivering up to 1.6 V in blood. The tubular geometry of this nano-biosupercapacitor provides efficient self-protection against external forces from pulsating blood or muscle contraction. Redox enzymes and living cells, naturally present in blood boost the performance of the device by 40% and help to solve the self-discharging problem persistently encountered by miniaturized supercapacitors. At full capacity, the nano-biosupercapacitors drive a complex integrated sensor system to measure the pH-value in blood. This demonstration opens up opportunities for next generation intravascular implants and microrobotic systems operating in hard-to-reach small spaces deep inside the human body.
  • Item
    Ultracold atom interferometry in space
    ([London] : Nature Publishing Group UK, 2021) Lachmann, Maike D.; Ahlers, Holger; Becker, Dennis; Dinkelaker, Aline N.; Grosse, Jens; Hellmig, Ortwin; Müntinga, Hauke; Schkolnik, Vladimir; Seidel, Stephan T.; Wendrich, Thijs; Wenzlawski, André; Carrick, Benjamin; Gaaloul, Naceur; Lüdtke, Daniel; Braxmaier, Claus; Ertmer, Wolfgang; Krutzik, Markus; Lämmerzahl, Claus; Peters, Achim; Schleich, Wolfgang P.; Sengstock, Klaus; Wicht, Andreas; Windpassinger, Patrick; Rasel, Ernst M.
    Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.
  • Item
    Topological protection versus degree of entanglement of two-photon light in photonic topological insulators
    ([London] : Nature Publishing Group UK, 2021) Tschernig, Konrad; Jimenez-Galán, Álvaro; Christodoulides, Demetrios N.; Ivanov, Misha; Busch, Kurt; Bandres, Miguel A.; Perez-Leija, Armando
    Topological insulators combine insulating properties in the bulk with scattering-free transport along edges, supporting dissipationless unidirectional energy and information flow even in the presence of defects and disorder. The feasibility of engineering quantum Hamiltonians with photonic tools, combined with the availability of entangled photons, raises the intriguing possibility of employing topologically protected entangled states in optical quantum computing and information processing. However, while two-photon states built as a product of two topologically protected single-photon states inherit full protection from their single-photon “parents”, a high degree of non-separability may lead to rapid deterioration of the two-photon states after propagation through disorder. In this work, we identify physical mechanisms which contribute to the vulnerability of entangled states in topological photonic lattices. Further, we show that in order to maximize entanglement without sacrificing topological protection, the joint spectral correlation map of two-photon states must fit inside a well-defined topological window of protection.
  • Item
    3,3-Difluoroallyl ammonium salts: highly versatile, stable and selective gem-difluoroallylation reagents
    ([London] : Nature Publishing Group UK, 2021) Ye, Fei; Ge, Yao; Spannenberg, Anke; Neumann, Helfried; Xu, Li-Wen; Beller, Matthias
    The selective synthesis of fluorinated organic molecules continues to be of major importance for the development of bioactive compounds (agrochemicals and pharmaceuticals) as well as unique materials. Among the established synthetic toolbox for incorporation of fluorine-containing units, efficient and general reagents for introducing -CF2- groups have been largely neglected. Here, we present the synthesis of 3,3-difluoropropen-1-yl ammonium salts (DFPAs) as stable, and scalable gem-difluoromethylation reagents, which allow for the direct reaction with a wide range of fascinating nucleophiles. DFPAs smoothly react with N-, O-, S-, Se-, and C-nucleophiles under mild conditions without necessity of metal catalysts with exclusive regioselectivity. In this way, the presented reagents also permit the straightforward preparation of many analogues of existing pharmaceuticals.
  • Item
    Combining ambitious climate policies with efforts to eradicate poverty
    ([London] : Nature Publishing Group UK, 2021) Soergel, Bjoern; Kriegler, Elmar; Bodirsky, Benjamin Leon; Bauer, Nico; Leimbach, Marian; Popp, Alexander
    Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 °C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (−6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries.
  • Item
    Climatic windows for human migration out of Africa in the past 300,000 years
    ([London] : Nature Publishing Group UK, 2021) Beyer, Robert M.; Krapp, Mario; Eriksson, Anders; Manica, Andrea
    Whilst an African origin of modern humans is well established, the timings and routes of their expansions into Eurasia are the subject of heated debate, due to the scarcity of fossils and the lack of suitably old ancient DNA. Here, we use high-resolution palaeoclimate reconstructions to estimate how difficult it would have been for humans in terms of rainfall availability to leave the African continent in the past 300k years. We then combine these results with an anthropologically and ecologically motivated estimate of the minimum level of rainfall required by hunter-gatherers to survive, allowing us to reconstruct when, and along which geographic paths, expansions out of Africa would have been climatically feasible. The estimated timings and routes of potential contact with Eurasia are compatible with archaeological and genetic evidence of human expansions out of Africa, highlighting the key role of palaeoclimate variability for modern human dispersals.
  • Item
    Alternative carbon price trajectories can avoid excessive carbon removal
    ([London] : Nature Publishing Group UK, 2021) Strefler, Jessica; Kriegler, Elmar; Bauer, Nico; Luderer, Gunnar; Pietzcker, Robert C.; Giannousakis, Anastasis; Edenhofer, Ottmar
    The large majority of climate change mitigation scenarios that hold warming below 2 °C show high deployment of carbon dioxide removal (CDR), resulting in a peak-and-decline behavior in global temperature. This is driven by the assumption of an exponentially increasing carbon price trajectory which is perceived to be economically optimal for meeting a carbon budget. However, this optimality relies on the assumption that a finite carbon budget associated with a temperature target is filled up steadily over time. The availability of net carbon removals invalidates this assumption and therefore a different carbon price trajectory should be chosen. We show how the optimal carbon price path for remaining well below 2 °C limits CDR demand and analyze requirements for constructing alternatives, which may be easier to implement in reality. We show that warming can be held at well below 2 °C at much lower long-term economic effort and lower CDR deployment and therefore lower risks if carbon prices are high enough in the beginning to ensure target compliance, but increase at a lower rate after carbon neutrality has been reached.
  • Item
    Optoregulated force application to cellular receptors using molecular motors
    (London : Nature Publishing Group, 2021) Zheng, Yijun; Han, Mitchell K.L.; Zhao, Renping; Blass, Johanna; Zhang, Jingnan; Zhou, Dennis W.; Colard-Itté, Jean-Rémy; Dattler, Damien; Çolak, Arzu; Hoth, Markus; García, Andrés J.; Qu, Bin; Bennewitz, Roland; Giuseppone, Nicolas; del Campo, Aránzazu
    Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e. motor proteins pulling on cytoskeletal fibers), we present a unique molecular machine that can apply forces at cell-matrix and cell-cell junctions using light as an energy source. The key actuator is a light-driven rotatory molecular motor linked to polymer chains, which is intercalated between a membrane receptor and an engineered biointerface. The light-driven actuation of the molecular motor is converted in mechanical twisting of the entangled polymer chains, which will in turn effectively “pull” on engaged cell membrane receptors (e.g., integrins, T cell receptors) within the illuminated area. Applied forces have physiologically-relevant magnitude and occur at time scales within the relevant ranges for mechanotransduction at cell-friendly exposure conditions, as demonstrated in force-dependent focal adhesion maturation and T cell activation experiments. Our results reveal the potential of nanomotors for the manipulation of living cells at the molecular scale and demonstrate a functionality which at the moment cannot be achieved by other technologies for force application.
  • Item
    The multi-photon induced Fano effect
    ([London] : Nature Publishing Group UK, 2021) Litvinenko, K.L.; Le, Nguyen H.; Redlich, B.; Pidgeon, C.R.; Abrosimov, N.V.; Andreev, Y.; Huang, Zhiming; Murdin, B.N.
    The ordinary Fano effect occurs in many-electron atoms and requires an autoionizing state. With such a state, photo-ionization may proceed via pathways that interfere, and the characteristic asymmetric resonance structures appear in the continuum. Here we demonstrate that Fano structure may also be induced without need of auto-ionization, by dressing the continuum with an ordinary bound state in any atom by a coupling laser. Using multi-photon processes gives complete, ultra-fast control over the interference. We show that a line-shape index q near unity (maximum asymmetry) may be produced in hydrogenic silicon donors with a relatively weak beam. Since the Fano lineshape has both constructive and destructive interference, the laser control opens the possibility of state-selective detection with enhancement on one side of resonance and invisibility on the other. We discuss a variety of atomic and molecular spectroscopies, and in the case of silicon donors we provide a calculation for a qubit readout application.
  • Item
    Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors
    ([London] : Nature Publishing Group UK, 2021) Kublitski, Jonas; Fischer, Axel; Xing, Shen; Baisinger, Lukasz; Bittrich, Eva; Spoltore, Donato; Benduhn, Johannes; Vandewal, Koen; Leo, Karl
    Detection of electromagnetic signals for applications such as health, product quality monitoring or astronomy requires highly responsive and wavelength selective devices. Photomultiplication-type organic photodetectors have been shown to achieve high quantum efficiencies mainly in the visible range. Much less research has been focused on realizing near-infrared narrowband devices. Here, we demonstrate fully vacuum-processed narrow- and broadband photomultiplication-type organic photodetectors. Devices are based on enhanced hole injection leading to a maximum external quantum efficiency of almost 2000% at −10 V for the broadband device. The photomultiplicative effect is also observed in the charge-transfer state absorption region. By making use of an optical cavity device architecture, we enhance the charge-transfer response and demonstrate a wavelength tunable narrowband photomultiplication-type organic photodetector with external quantum efficiencies superior to those of pin-devices. The presented concept can further improve the performance of photodetectors based on the absorption of charge-transfer states, which were so far limited by the low external quantum efficiency provided by these devices.