Search Results

Now showing 1 - 10 of 35
  • Item
    Modified wavelet analysis of ECoG-pattern as promising tool for detection of the blood–brain barrier leakage
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Runnova, Anastasiya; Zhuravlev, Maksim; Ukolov, Rodion; Blokhina, Inna; Dubrovski, Alexander; Lezhnev, Nikita; Sitnikova, Evgeniya; Saranceva, Elena; Kiselev, Anton; Karavaev, Anatoly; Selskii, Anton; Semyachkina-Glushkovskaya, Oxana; Penzel, Thomas; Kurths, Jurgen
    A new approach for detection oscillatory patterns and estimation of their dynamics based by a modified CWT skeleton method is presented. The method opens up additional perspectives for the analysis of subtle changes in the oscillatory activity of complex nonstationary signals. The method was applied to analyze unique experimental signals obtained in usual conditions and after the non-invasive increase in the blood–brain barrier (BBB) permeability in 10 male Wistar rats. The results of the wavelet-analysis of electrocorticography (ECoG) recorded in a normal physiological state and after an increase in the BBB permeability of animals demonstrate significant changes between these states during wakefulness of animals and an essential smoothing of these differences during sleep. Sleep is closely related to the processes of observed changes in the BBB permeability.
  • Item
    Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model
    (San Francisco, California, US : PLOS, 2016) Kluge, Susanne; Bekeschus, Sander; Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel; Yousfi, Mohammed
    Objective: So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods: Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results: For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion: The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks.
  • Item
    Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Reichert, Doreen; Friedrichs, Jens; Ritter, Steffi; Käubler, Theresa; Werner, Carsten; Bornhäuser, Martin; Corbeil, Denis
    Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.
  • Item
    Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)
    (San Francisco, California, US : PLOS, 2016) Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis; Nabi, Ivan R
    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
  • Item
    Tumor cytotoxicity and immunogenicity of a novel V-jet neon plasma source compared to the kINPen
    (London : Nature Publishing Group, 2021) Miebach, Lea; Freund, Eric; Horn, Stefan; Niessner, Felix; Sagwal, Sanjeev Kumar; von Woedtke, Thomas; Emmert, Steffen; Weltmann, Klaus-Dieter; Clemen, Ramona; Schmidt, Anke; Gerling, Torsten; Bekeschus, Sander
    Recent research indicated the potential of cold physical plasma in cancer therapy. The plethora of plasma-derived reactive oxygen and nitrogen species (ROS/RNS) mediate diverse antitumor effects after eliciting oxidative stress in cancer cells. We aimed at exploiting this principle using a newly designed dual-jet neon plasma source (Vjet) to treat colorectal cancer cells. A treatment time-dependent ROS/RNS generation induced oxidation, growth retardation, and cell death within 3D tumor spheroids were found. In TUM-CAM, a semi in vivo model, the Vjet markedly reduced vascularized tumors' growth, but an increase of tumor cell immunogenicity or uptake by dendritic cells was not observed. By comparison, the argon-driven single jet kINPen, known to mediate anticancer effects in vitro, in vivo, and in patients, generated less ROS/RNS and terminal cell death in spheroids. In the TUM-CAM model, however, the kINPen was equivalently effective and induced a stronger expression of immunogenic cancer cell death (ICD) markers, leading to increased phagocytosis of kINPen but not Vjet plasma-treated tumor cells by dendritic cells. Moreover, the Vjet was characterized according to the requirements of the DIN-SPEC 91315. Our results highlight the plasma device-specific action on cancer cells for evaluating optimal discharges for plasma cancer treatment.
  • Item
    Cellular responses to beating hydrogels to investigate mechanotransduction
    ([London] : Nature Publishing Group UK, 2019) Chandorkar, Yashoda; Castro Nava, Arturo; Schweizerhof, Sjören; Van Dongen, Marcel; Haraszti, Tamás; Köhler, Jens; Zhang, Hang; Windoffer, Reinhard; Mourran, Ahmed; Möller, Martin; De Laporte, Laura
    Cells feel the forces exerted on them by the surrounding extracellular matrix (ECM) environment and respond to them. While many cell fate processes are dictated by these forces, which are highly synchronized in space and time, abnormal force transduction is implicated in the progression of many diseases (muscular dystrophy, cancer). However, material platforms that enable transient, cyclic forces in vitro to recreate an in vivo-like scenario remain a challenge. Here, we report a hydrogel system that rapidly beats (actuates) with spatio-temporal control using a near infra-red light trigger. Small, user-defined mechanical forces (~nN) are exerted on cells growing on the hydrogel surface at frequencies up to 10 Hz, revealing insights into the effect of actuation on cell migration and the kinetics of reversible nuclear translocation of the mechanosensor protein myocardin related transcription factor A, depending on the actuation amplitude, duration and frequency.
  • Item
    Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Freund, Eric; Liedtke, Kim Rouven; van der Linde, Julia; Metelmann, Hans-Robert; Heidecke, Claus-Dieter; Partecke, Lars-Ivo; Bekeschus, Sander
    Metastatic colorectal cancer is the fourth most common cause of cancer death. Current options in palliation such as hyperthermic intraperitoneal chemotherapy (HIPEC) present severe side effects. Recent research efforts suggested the therapeutic use of oxidant-enriched liquid using cold physical plasma. To investigate a clinically accepted treatment regimen, we assessed the antitumor capacity of plasma-treated saline solution. In response to such liquid, CT26 murine colon cancer cells were readily oxidized and showed cell growth with subsequent apoptosis, cell cycle arrest, and upregulation of immunogenic cell death (ICD) markers in vitro. This was accompanied by marked morphological changes with re-arrangement of actin fibers and reduced motility. Induction of an epithelial-to-mesenchymal transition phenotype was not observed. Key results were confirmed in MC38 colon and PDA6606 pancreatic cancer cells. Compared to plasma-treated saline, hydrogen peroxide was inferiorly toxic in 3D tumor spheroids but of similar efficacy in 2D models. In vivo, plasma-treated saline decreased tumor burden in Balb/C mice. This was concomitant with elevated numbers of intratumoral macrophages and increased T cell activation following incubation with CT26 cells ex vivo. Being a potential adjuvant for HIPEC therapy, our results suggest oxidizing saline solutions to inactivate colon cancer cells while potentially stimulating antitumor immune responses.
  • Item
    Climatic windows for human migration out of Africa in the past 300,000 years
    ([London] : Nature Publishing Group UK, 2021) Beyer, Robert M.; Krapp, Mario; Eriksson, Anders; Manica, Andrea
    Whilst an African origin of modern humans is well established, the timings and routes of their expansions into Eurasia are the subject of heated debate, due to the scarcity of fossils and the lack of suitably old ancient DNA. Here, we use high-resolution palaeoclimate reconstructions to estimate how difficult it would have been for humans in terms of rainfall availability to leave the African continent in the past 300k years. We then combine these results with an anthropologically and ecologically motivated estimate of the minimum level of rainfall required by hunter-gatherers to survive, allowing us to reconstruct when, and along which geographic paths, expansions out of Africa would have been climatically feasible. The estimated timings and routes of potential contact with Eurasia are compatible with archaeological and genetic evidence of human expansions out of Africa, highlighting the key role of palaeoclimate variability for modern human dispersals.
  • Item
    Fibronectin promotes directional persistence in fibroblast migration through interactions with both its cell-binding and heparin-binding domains
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2017) Missirlis, Dimitris; Haraszti, Tamás; Kessler, Horst; Spatz, Joachim P.
    The precise mechanisms through which insoluble, cell-adhesive ligands induce and regulate directional cell migration remain obscure. We recently demonstrated that elevated surface density of physically adsorbed plasma fibronectin (FN) promotes high directional persistence in fibroblast migration. While cell-FN association through integrins α5β1 and αvβ3 was necessary, substrates that selectively engaged these integrins did not support the phenotype. We here show that high directional persistence necessitates a combination of the cell-binding and C-terminal heparin-binding domains of FN, but does not require the engagement of syndecan-4 or integrin α4β1. FN treatment with various fixation agents indicated that associated changes in fibroblast motility were due to biochemical changes, rather than alterations in its physical state. The nature of the coating determined the ability of fibroblasts to assemble endogenous or exogenous FN, while FN fibrillogenesis played a minor, but significant, role in regulating directionality. Interestingly, knockdown of cellular FN abolished cell motility altogether, demonstrating a requirement for intracellular processes in enabling fibroblast migration on FN. Lastly, kinase inhibition experiments revealed that regulation of cell speed and directional persistence are decoupled. Hence, we have identified factors that render full-length FN a promoter of directional migration and discuss the possible, relevant mechanisms.
  • Item
    Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo
    ([London] : Macmillan Publishers Limited, 2017) Liedtke, Kim Rouven; Bekeschus, Sander; Kaeding, André; Hackbarth, Christine; Kuehn, Jens-Peter; Heidecke, Claus-Dieter; von Bernstorff, Wolfram; von Woedtke, Thomas; Partecke, Lars Ivo
    Pancreatic cancer is associated with a high mortality rate. In advanced stage, patients often experience peritoneal carcinomatosis. Using a syngeneic murine pancreatic cancer cell tumor model, the effect of non-thermal plasma (NTP) on peritoneal metastatic lesions was studied. NTP generates reactive species of several kinds which have been proven to be of relevance in cancer. In vitro, exposure to both plasma and plasma-treated solution significantly decreased cell viability and proliferation of 6606PDA cancer cells, whereas mouse fibroblasts were less affected. Repeated intraperitoneal treatment of NTP-conditioned medium decreased tumor growth in vivo as determined by magnetic resonance imaging, leading to reduced tumor mass and improved median survival (61 vs 52 days; p < 0.024). Tumor nodes treated by NTP-conditioned medium demonstrated large areas of apoptosis with strongly inhibited cell proliferation. Contemporaneously, no systemic effects were found. Apoptosis was neither present in the liver nor in the gut. Also, the concentration of different cytokines in splenocytes or blood plasma as well as the distribution of various hematological parameters remained unchanged following treatment with NTP-conditioned medium. These results suggest an anticancer role of NTP-treated solutions with little to no systemic side effects being present, making NTP-treated solutions a potential complementary therapeutic option for advanced tumors.