Search Results

Now showing 1 - 4 of 4
  • Item
    Extremely large magnetoresistance from electron-hole compensation in the nodal-loop semimetal ZrP2
    (Woodbury, NY : Inst., 2021) Bannies, J.; Razzoli, E.; Michiardi, M.; Kung, H.-H.; Elfimov, I.S.; Yao, M.; Fedorov, A.; Fink, J.; Jozwiak, C.; Bostwick, A.; Rotenberg, E.; Damascelli, A.; Felser, C.
    Several early transition metal dipnictides (TMDPs) have been found to host topological semimetal states and exhibit large magnetoresistance (MR). In this paper, we use angle-resolved photoemission spectroscopy (ARPES) and magnetotransport to study the electronic properties of a TMDP ZrP2. We find that ZrP2 exhibits an extremely large and unsaturated MR of up to 40 000% at 2 K, which originates from an almost perfect electron-hole (e-h) compensation. Our band structure calculations further show that ZrP2 hosts a topological nodal loop in proximity to the Fermi level. Based on the ARPES measurements, we confirm the results of our calculations and determine the surface band structure. This paper establishes ZrP2 as a platform to investigate near-perfect e-h compensation and its interplay with topological band structures.
  • Item
    Experimental Observation of Dirac Nodal Links in Centrosymmetric Semimetal TiB2
    (College Park, MD : American Physical Society, 2018) Liu, Z.; Lou, R.; Guo, P.; Wang, Q.; Sun, S.; Li, C.; Thirupathaiah, S.; Fedorov, A.; Shen, D.; Liu, K.; Lei, H.; Wang, S.
    The topological nodal-line semimetal state, serving as a fertile ground for various topological quantum phases, where a topological insulator, Dirac semimetal, or Weyl semimetal can be realized when the certain protecting symmetry is broken, has only been experimentally studied in very few materials. In contrast to discrete nodes, nodal lines with rich topological configurations can lead to more unusual transport phenomena. Utilizing angle-resolved photoemission spectroscopy and first-principles calculations, here, we provide compelling evidence of nodal-line fermions in centrosymmetric semimetal TiB2 with a negligible spin-orbit coupling effect. With the band crossings just below the Fermi energy, two groups of Dirac nodal rings are clearly observed without any interference from other bands, one surrounding the Brillouin zone (BZ) corner in the horizontal mirror plane σh and the other surrounding the BZ center in the vertical mirror plane σv. The linear dispersions forming Dirac nodal rings are as wide as 2 eV. We further observe that the two groups of nodal rings link together along the Γ-K direction, composing a nodal-link configuration. The simple electronic structure with Dirac nodal links mainly constituting the Fermi surfaces suggests TiB2 as a remarkable platform for studying and applying the novel physical properties related to nodal-line fermions.
  • Item
    Suppression of nematicity by tensile strain in multilayer FeSe/SrTiO3 films
    (College Park, MD : APS, 2023) Lou, Rui; Suvorov, Oleksandr; Grafe, Hans-Joachim; Kuibarov, Andrii; Krivenkov, Maxim; Rader, Oliver; Büchner, Bernd; Borisenko, Sergey; Fedorov, Alexander
    The nematicity in multilayer FeSe/SrTiO3 films has been previously suggested to be enhanced with decreasing film thickness. Motivated by this, there have been many discussions about the competing relation between nematicity and superconductivity. However, the criterion for determining the nematicity strength in FeSe remains highly debated. The understanding of nematicity as well as its relation to superconductivity in FeSe films is therefore still controversial. Here, we fabricate multilayer FeSe/SrTiO3 films using molecular beam epitaxy and study the nematic properties by combining angle-resolved photoemission spectroscopy, Se77 nuclear magnetic resonance, and scanning tunneling microscopy experiments. We unambiguously demonstrate that, near the interface, the nematic order is suppressed by the SrTiO3-induced tensile strain; in the bulk region further away from the interface, the strength of nematicity recovers to the bulk value. Our results not only solve the recent controversy about the nematicity in multilayer FeSe films, but also offer valuable insights into the relationship between nematicity and superconductivity.
  • Item
    Manifestations of impurity-induced s±⇒s++ transition: Multiband model for dynamical response functions
    (Bristol : IOP, 2013) Efremov, D.; Golubov, A.A.; Dolgov, O.V.
    We investigate the effects of disorder on the density of states, the single-particle response function and optical conductivity in multiband superconductors with s± symmetry of the order parameter, where s± → s++ transition may take place. In the vicinity of the transition, the superconductive gapless regime is realized. It manifests itself in anomalies in the above-mentioned properties. As a result, intrinsically phase-insensitive experimental methods such as angle-resolved photoemission spectroscopy, tunneling and terahertz spectroscopy may be used to reveal information about the underlying order parameter symmetry.