Search Results

Now showing 1 - 4 of 4
  • Item
    Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films
    (Cambridge : Soc., 2015) Srivastava, Sachin K.; Hamo, Hilla Ben; Kushmaro, Ariel; Marks, Robert S.; Grüner, Christoph; Rauschenbach, Bernd; Abdulhalim, Ibrahim
    A nanobiosensor chip, utilizing surface enhanced Raman spectroscopy (SERS) on nanosculptured thin films (nSTFs) of silver, was shown to detect Escherichia coli (E. coli) bacteria down to the concentration level of a single bacterium. The sensor utilizes highly enhanced plasmonic nSTFs of silver on a silicon platform for the enhancement of Raman bands as checked with adsorbed 4-aminothiophenol molecules. T-4 bacteriophages were immobilized on the aforementioned surface of the chip for the specific capture of target E. coli bacteria. To demonstrate that no significant non-specific immobilization of other bacteria occurs, three different, additional bacterial strains, Chromobacterium violaceum, Paracoccus denitrificans and Pseudomonas aeruginosa were used. Furthermore, experiments performed on an additional strain of E. coli to address the specificity and reusability of the sensor showed that the sensor operates for different strains of E. coli and is reusable. Time resolved phase contrast microscopy of the E. coli-T4 bacteriophage chip was performed to study its interaction with bacteria over time. Results showed that the present sensor performs a fast, accurate and stable detection of E. coli with ultra-small concentrations of bacteria down to the level of a single bacterium in 10 μl volume of the sample.
  • Item
    Automatic spike correction using UNIFIT 2020
    (Chichester [u.a.] : Wiley, 2019) Hesse, Ronald; Bundesmann, Carsten; Denecke, Reinhard
    The improvement of the software UNIFIT 2020 from an analysis processing software for photoelectron spectroscopy (XPS) only to a powerful tool for XPS, Auger electron spectroscopy (AES), X-ray absorption spectroscopy (XAS), and Raman spectroscopy requires new additional programme routines. Particularly, the implementation of the analysis of Raman spectra needs a well-working automatic spike correction. The application of the modified discrete Laplace operator method allows for a perfect localization and correction of the spikes and finally a successful peak fit of the spectra. The theoretical basis is described. Test spectra allow for the evaluation of the presented method. A comparison of the original and spike-corrected real measurements demonstrates the high quality of the method used.
  • Item
    Orientation‐dependent nanostructuring of titanium surfaces by low‐energy ion beam erosion
    (Chichester [u.a.] : Wiley, 2020) Bauer, Jens; Frost, Frank
    Regular nanoscopic ripple and dot patterns are fabricated on poly-crystalline titanium samples by irradiation with 1.5 keV argon ions at normal incidence. The morphology of the nanostructures is investigated by scanning electron microscopy and scanning force microscopy. The ripple structures exhibit a saw-tooth cross-section profile. Electron backscatter diffraction experiments are performed to analyze the local grain structure. The study suggests a distinct correlation of the nanostructure morphology to the crystallographic orientation of the titanium surface.
  • Item
    Programing stimuli-responsiveness of gelatin with electron beams: Basic effects and development of a hydration-controlled biocompatible demonstrator
    (London : Nature Publishing Group, 2017) Riedel, Stefanie; Heyart, Benedikt; Apel, Katharina S.; Mayr, Stefan G.
    Biomimetic materials with programmable stimuli responsiveness constitute a highly attractive material class for building bioactuators, sensors and active control elements in future biomedical applications. With this background, we demonstrate how energetic electron beams can be utilized to construct tailored stimuli responsive actuators for biomedical applications. Composed of collagen-derived gelatin, they reveal a mechanical response to hydration and changes in pH-value and ion concentration, while maintaining their excellent biocompatibility and biodegradability. While this is explicitly demonstrated by systematic characterizing an electron-beam synthesized gelatin-based actuator of cantilever geometry, the underlying materials processes are also discussed, based on the fundamental physical and chemical principles. When applied within classical electron beam lithography systems, these findings pave the way for a novel class of highly versatile integrated bioactuators from micro-to macroscales.