Search Results

Now showing 1 - 2 of 2
  • Item
    Solvent-antisolvent interactions in metal halide perovskites
    (Cambridge : Soc., 2023) Bautista-Quijano, Jose Roberto; Telschow, Oscar; Paulus, Fabian; Vaynzof, Yana
    The fabrication of metal halide perovskite films using the solvent-engineering method is increasingly common. In this method, the crystallisation of the perovskite layer is triggered by the application of an antisolvent during the spin-coating of a perovskite precursor solution. Herein, we introduce the current state of understanding of the processes involved in the crystallisation of perovskite layers formed by solvent engineering, focusing in particular on the role of antisolvent properties and solvent-antisolvent interactions. By considering the impact of the Hansen solubility parameters, we propose guidelines for selecting the appropriate antisolvent and outline open questions and future research directions for the fabrication of perovskite films by this method.
  • Item
    A thiazolo[5,4-: D] thiazole-bridged porphyrin organic framework as a promising nonlinear optical material
    (London : Royal Society of Chemistry (RSC), 2019) Samal, Mahalaxmi; Valligatla, Sreeramulu; Saad, Nabil A.; Rao, M. Veeramohan; Rao, D. Narayana; Sahu, Rojalin; Biswal, Bishnu P.
    Porphyrin-based porous organic frameworks are an important group of materials gaining interest due to their structural diversity and distinct opto-electronic properties. However, these materials are seldom explored for nonlinear optical (NLO) applications. In this work, we investigate a thiazolo[5,4-d]thiazole-bridged porous, porphyrin framework (Por-TzTz-POF) with promising NLO properties. The planar TzTz moiety coupled with integrated porphyrin units enables efficient π-conjugation and charge distribution in the Por-TzTz-POF resulting in a high nonlinear absorption coefficient (β = 1100 cm GW-1) with figure of merit (FoM) σ1/σ0 = 5571, in contrast to analogous molecules and material counterparts e.g. metal-organic frameworks (MOFs; β = ∼0.3-0.5 cm GW-1), molecular porphyrins (β = ∼100-400 cm GW-1), graphene (β = 900 cm GW-1), and covalent organic frameworks (Por-COF-HH; β = 1040 cm GW-1 and FoM = 3534). This journal is © The Royal Society of Chemistry.