Search Results

Now showing 1 - 9 of 9
  • Item
    Key Role of Reactive Oxygen Species (ROS) in Indirubin Derivative-Induced Cell Death in Cutaneous T-Cell Lymphoma Cells
    (Basel : Molecular Diversity Preservation International, 2019) Soltan, Marwa Y.; Sumarni, Uly; Assaf, Chalid; Langer, Peter; Reidel, Ulrich; Eberle, Jürgen
    Cutaneous T-cell lymphoma (CTCL) may develop a highly malignant phenotype in its late phase, and patients may profit from innovative therapies. The plant extract indirubin and its chemical derivatives represent new and promising antitumor strategies. This first report on the effects of an indirubin derivative in CTCL cells shows a strong decrease of cell proliferation and cell viability as well as an induction of apoptosis, suggesting indirubin derivatives for therapy of CTCL. As concerning the mode of activity, the indirubin derivative DKP-071 activated the extrinsic apoptosis cascade via caspase-8 and caspase-3 through downregulation of the caspase antagonistic proteins c-FLIP and XIAP. Importantly, a strong increase of reactive oxygen species (ROS) was observed as an immediate early effect in response to DKP-071 treatment. The use of antioxidative pre-treatment proved the decisive role of ROS, which turned out upstream of all other proapoptotic effects monitored. Thus, reactive oxygen species appear as a highly active proapoptotic pathway in CTCL, which may be promising for therapeutic intervention. This pathway can be efficiently activated by an indirubin derivative. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Highly Selective Syngas/H2 Production via Partial Oxidation of CH4 Using (Ni, Co and Ni–Co)/ZrO2–Al2O3 Catalysts: Influence of Calcination Temperature
    (Basel : MDPI, 2019) Fakeeha, Anis Hamza; Arafat, Yasir; Ibrahim, Ahmed Aidid; Shaikh, Hamid; Atia, Hanan; Abasaeed, Ahmed Elhag; Armbruster, Udo; Al-Fatesh, Ahmed Sadeq
    In this study, Ni, Co and Ni–Co catalysts supported on binary oxide ZrO2–Al2O3 were synthesized by sol-gel method and characterized by means of various analytical techniques such as XRD, BET, TPR, TPD, TGA, SEM, and TEM. This catalytic system was then tested for syngas respective H2 production via partial oxidation of methane at 700 °C and 800 °C. The influence of calcination temperatures was studied and their impact on catalytic activity and stability was evaluated. It was observed that increasing the calcination temperature from 550 °C to 800 °C and addition of ZrO2 to Al2O3 enhances Ni metal-support interaction. This increases the catalytic activity and sintering resistance. Furthermore, ZrO2 provides higher oxygen storage capacity and stronger Lewis basicity which contributed to coke suppression, eventually leading to a more stable catalyst. It was also observed that, contrary to bimetallic catalysts, monometallic catalysts exhibit higher activity with higher calcination temperature. At the same time, Co and Ni–Co-based catalysts exhibit higher activity than Ni-based catalysts which was not expected. The Co-based catalyst calcined at 800 °C demonstrated excellent stability over 24 h on stream. In general, all catalysts demonstrated high CH4 conversion and exceptionally high selectivity to H2 (~98%) at 700 °C.
  • Item
    Morphology, Optical Properties and Photocatalytic Activity of Photo- and Plasma-Deposited Au and Au/Ag Core/Shell Nanoparticles on Titania Layers
    (Basel : MDPI, 2018-7-6) Müller, Alexander; Peglow, Sandra; Karnahl, Michael; Kruth, Angela; Junge, Henrik; Brüser, Volker; Scheu, Christina
    Titania is a promising material for numerous photocatalytic reactions such as water splitting and the degradation of organic compounds (e.g., methanol, phenol). Its catalytic performance can be significantly increased by the addition of co-catalysts. In this study, Au and Au/Ag nanoparticles were deposited onto mesoporous titania thin films using photo-deposition (Au) and magnetron-sputtering (Au and Au/Ag). All samples underwent comprehensive structural characterization by grazing incidence X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Nanoparticle distributions and nanoparticle size distributions were correlated to the deposition methods. Light absorption measurements showed features related to diffuse scattering, the band gap of titania and the local surface plasmon resonance of the noble metal nanoparticles. Further, the photocatalytic activities were measured using methanol as a hole scavenger. All nanoparticle-decorated thin films showed significant performance increases in hydrogen evolution under UV illumination compared to pure titania, with an evolution rate of up to 372 μL H2 h−1 cm−2 representing a promising approximately 12-fold increase compared to pure titania.
  • Item
    Ecophysiological, morphological, and biochemical traits of free-living Diplosphaera chodatii (Trebouxiophyceae) reveal adaptation to harsh environmental conditions
    (Wien ; New York : Springer, 2021) Medwed, Cynthia; Holzinger, Andreas; Hofer, Stefanie; Hartmann, Anja; Michalik, Dirk; Glaser, Karin; Karsten, Ulf
    Single-celled green algae within the Trebouxiophyceae (Chlorophyta) are typical components of terrestrial habitats, which often exhibit harsh environmental conditions for these microorganisms. This study provides a detailed overview of the ecophysiological, biochemical, and ultrastructural traits of an alga living on tree bark. The alga was isolated from a cypress tree in the Botanical Garden of Innsbruck (Austria) and identified by morphology and molecular phylogeny as Diplosphaera chodatii. Transmission electron microscopy after high-pressure freezing (HPF) showed an excellent preservation of the ultrastructure. The cell wall was bilayered with a smooth inner layer and an outer layer of polysaccharides with a fuzzy hair-like appearance that could possibly act as cell-cell adhesion mechanism and hence as a structural precursor supporting biofilm formation together with the mucilage observed occasionally. The photosynthetic-irradiance curves of D. chodatii indicated low light requirements without photoinhibition at high photon flux densities (1580 μmol photons m−2 s−1) supported by growth rate measurements. D. chodatii showed a high desiccation tolerance, as 85% of its initial value was recovered after controlled desiccation at a relative humidity of ~10%. The alga contained the low molecular weight carbohydrates sucrose and sorbitol, which probably act as protective compounds against desiccation. In addition, a new but chemically not elucidated mycosporine-like amino acid was detected with a molecular mass of 332 g mol−1 and an absorption maximum of 324 nm. The presented data provide various traits which contribute to a better understanding of the adaptive mechanisms of D. chodatii to terrestrial habitats.
  • Item
    Isoquinolinamine FX-9 Exhibits Anti-Mitotic Activity in Human and Canine Prostate Carcinoma Cell Lines
    (Basel : Molecular Diversity Preservation International, 2019) Schille, Jan Torben; Nolte, Ingo; Packeiser, Eva-Maria; Wiesner, Laura; Hein, Jens Ingo; Weiner, Franziska; Wu, Xiao-Feng; Beller, Matthias; Junghanss, Christian; Escobar, Hugo Murua
    Current therapies are insufficient for metastatic prostate cancer (PCa) in men and dogs. As human castrate-resistant PCa shares several characteristics with the canine disease, comparative evaluation of novel therapeutic agents is of considerable value for both species. Novel isoquinolinamine FX-9 exhibits antiproliferative activity in acute lymphoblastic leukemia cell lines but has not been tested yet on any solid neoplasia type. In this study, FX-9's mediated effects were characterized on two human (PC-3, LNCaP) and two canine (CT1258, 0846) PCa cell lines, as well as benign solid tissue cells. FX-9 significantly inhibited cell viability and induced apoptosis with concentrations in the low micromolar range. Mediated effects were highly comparable between the PCa cell lines of both species, but less pronounced on non-malignant chondrocytes and fibroblasts. Interestingly, FX-9 exposure also leads to the formation and survival of enlarged multinucleated cells through mitotic slippage. Based on the results, FX-9 acts as an anti-mitotic agent with reduced cytotoxic activity in benign cells. The characterization of FX-9-induced effects on PCa cells provides a basis for in vivo studies with the potential of valuable transferable findings to the benefit of men and dogs. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Low-Temperature Steam Reforming of Natural Gas after LPG-Enrichment with MFI Membranes
    (Basel : MDPI, 2018-12-12) Seeburg, Dominik; Liu, Dongjing; Dragomirova, Radostina; Atia, Hanan; Pohl, Marga-Martina; Amani, Hadis; Georgi, Gabriele; Kreft, Stefanie; Wohlrab, Sebastian
    Low-temperature hydrogen production from natural gas via steam reforming requires novel processing concepts as well as stable catalysts. A process using zeolite membranes of the type MFI (Mobile FIve) was used to enrich natural gas with liquefied petroleum gas (LPG) alkanes (in particular, propane and n-butane), in order to improve the hydrogen production from this mixture at a reduced temperature. For this purpose, a catalyst precursor based on Rh single-sites (1 mol% Rh) on alumina was transformed in situ to a Rh1/Al2O3 catalyst possessing better performance capabilities compared with commercial catalysts. A wet raw natural gas (57.6 vol% CH4) was fully reformed at 650 °C, with 1 bar absolute pressure over the Rh1/Al2O3 at a steam to carbon ratio S/C = 4, yielding 74.7% H2. However, at 350 °C only 21 vol% H2 was obtained under these conditions. The second mixture, enriched with LPG, was obtained from the raw gas after the membrane process and contained only 25.2 vol% CH4. From this second mixture, 47 vol% H2 was generated at 350 °C after steam reforming over the Rh1/Al2O3 catalyst at S/C = 4. At S/C = 1 conversion was suppressed for both gas mixtures. Single alkane reforming of C2–C4 showed different sensitivity for side reactions, e.g., methanation between 350 and 650 °C. These results contribute to ongoing research in the field of low-temperature hydrogen release from natural gas alkanes for fuel cell applications as well as for pre-reforming processes.
  • Item
    Effect of chemical solvents on the wetting behavior over time of femtosecond laser structured ti6al4v surfaces
    (Basel : MDPI, 2020) Schnell, Georg; Polley, Christian; Bartling, Stephan; Seitz, Hermann
    The effect of chemical solvents on the wetting state of laser-structured surfaces over time is systematically examined in this paper. By using a 300-fs laser, nanostructures were generated on Ti6Al4V, subsequently cleaned in an ultrasonic bath with different solvents and stored in ambient air. The static contact angle showed significant differences for cleaning with various solvents, which, depending on the applied cleaning and time, amounted up to 100°. X-ray photoelectron spectroscopy analyses reveal that the cleaning of the laser-structured surfaces affects the surface chemistry and the aging behavior of the surfaces, even with highly volatile solvents. The effect of the chemical surface modification is particularly noticeable when using alcohols for cleaning, which, due to their OH groups, cause highly hydrophilic behavior of the surface after one day of storage. Over the course of 14 days, enrichment with organic groups from the atmosphere occurs on the surface, which leads to poorer wetting on almost every structured surface. In contrast, the cleaning in hexane leads to a fast saturation of the surface with long-chain carbon groups and thus to a time-independent hydrophobic behavior.
  • Item
    Separation of H2O/CO2 Mixtures by MFI Membranes: Experiment and Monte Carlo Study
    (Basel : MDPI, 2021) Wotzka, Alexander; Jorabchi, Majid Namayandeh; Wohlrab, Sebastian
    The separation of CO2 from gas streams is a central process to close the carbon cycle. Established amine scrubbing methods often require hot water vapour to desorb the previously stored CO2. In this work, the applicability of MFI membranes for H2O/CO2 separation is principally demonstrated by means of realistic adsorption isotherms computed by configurational-biased Monte Carlo (CBMC) simulations, then parameters such as temperatures, pressures and compositions were identified at which inorganic membranes with high selectivity can separate hot water vapour and thus make it available for recycling. Capillary condensation/adsorption by water in the microporous membranes used drastically reduces the transport and thus the CO2 permeance. Thus, separation factors of αH2O/CO2 = 6970 could be achieved at 70 °C and 1.8 bar feed pressure. Furthermore, the membranes were tested for stability against typical amines used in gas scrubbing processes. The preferred MFI membrane showed particularly high stability under application conditions.
  • Item
    PDA Indolylmaleimides Induce Anti-Tumor Effects in Prostate Carcinoma Cell Lines Through Mitotic Death
    (Lausanne : Frontiers Research Foundation, 2021) Schille, Jan Torben; Nolte, Ingo; Beck, Julia; Jilani, Daria; Roolf, Catrin; Pews-Davtyan, Anahit; Rolfs, Arndt; Henze, Larissa; Beller, Matthias; Brenig, Bertram; Junghanss, Christian; Schütz, Ekkehard; Murua Escobar, Hugo
    Castrate resistant prostate cancer in men shares several characteristics with canine prostate cancer (PCa). Due to current insufficient therapies, evaluating novel therapeutic agents for late-stage PCa is of considerable interest for both species. PDA indolylmaleimides showed anticancer effects in several neoplastic cell lines. Herein, a comparative characterization of PDA-66 and PDA-377 mediated effects was performed in human and canine PCa cell lines, which is also the first detailed characterization of these agents on cells derived from solid tumors in general. While PDA-377 showed only weak growth inhibition on human PCa cell lines, PDA-66 inhibited proliferation and induced apoptosis in human and canine cell lines with concentrations in the low micromolar range. Morphological characterization and whole transcriptome sequencing revealed that PDA-66 induces mitotic death through its microtubule-depolymerizing ability. PDA-66 appears to be a worthwhile anti-mitotic agent for further evaluation. The similarities in cellular and molecular response observed in the cell lines of both origins form a solid basis for the use of canine PCa in vivo models to gain valuable interchangeable data to the advantage of both species.