Search Results

Now showing 1 - 4 of 4
  • Item
    Dissolution and precipitation of copper-rich phases during heating and cooling of precipitation-hardening steel X5CrNiCuNb16-4 (17-4 PH)
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Rowolt, Christian; Milkereit, Benjamin; Springer, Armin; Kreyenschulte, Carsten; Kessler, Olaf
    Continuous heating transformation (CHT) diagrams and continuous cooling transformation (CCT) diagrams of precipitation-hardening steels have the drawback that important information on the dissolution and precipitation of Cu-rich phases during continuous heating and cooling are missing. This work uses a comparison of different techniques, namely dilatometry and differential scanning calorimetry for the in situ analysis of the so far neglected dissolution and precipitation of Cu-rich phases during continuous heating and cooling to overcome these drawbacks. Compared to dilatometry, DSC is much more sensitive to phase transformation affecting small volume fractions, like precipitation. Thus, the important solvus temperature for the dissolution of Cu-rich phases was revealed from DSC and integrated into the CHT diagram. Moreover, DSC reveals that during continuous cooling from solution treatment, premature Cu-rich phases may form depending on cooling rate. Those quench-induced precipitates were analysed for a broad range of cooling rates and imaged for microstructural analysis using optical microscopy, scanning electron microscopy and transmission electron microscopy. This information substantially improves the CCT diagram.
  • Item
    In situ powder X-ray diffraction during hydrogen reduction of MoO3 to MoO2
    (Amsterdam [u.a.] : Elsevier Science, 2022) Burgstaller, M.; Lund, H.; O'Sullivan, M.; Huppertz, H.
    The hydrogen reduction of molybdenum trioxide to molybdenum dioxide is not yet fully understood as evident by continuous scientific interest. Especially the effect of the potassium content on the reduction process has not yet been considered. We prepared several samples of molybdenum trioxide containing varying amounts of potassium by addition of potassium molybdate (K2MoO4). In situ powder X-ray diffraction experiments were then conducted to study the hydrogen reduction of these samples. We especially focused on the influence of the alkali content and on gaining insight into the importance of the intermediary product γ-Mo4O11. During the reduction process, MoO2 is formed from the reduction of MoO3, which then reacts with the starting material to form γ-Mo4O11. With increasing potassium content, the reduction rate is decreased and the fractional content of γ-Mo4O11 built up during the reduction process is increased. As evident from bulk sample reduction, this results in a significant increase in the grain size visualized via scanning electron microscopy. Our investigations once again underline the importance of γ-Mo4O11 on the morphology of the resulting MoO2 powder.
  • Item
    Heat accumulation during femtosecond laser treatment at high repetition rate – A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V
    (Amsterdam : Elsevier, 2021) Schnell, Georg; Lund, Henrik; Bartling, Stephan; Polley, Christian; Riaz, Abdullah; Senz, Volkmar; Springer, Armin; Seitz, Hermann
    This study presents a detailed characterization of self-organized nano- and microstructures on Ti6Al4V evoked by different scanning strategies and fluences with a 300 fs laser operating at a laser wavelength of 1030 nm. The resulting surface morphology was visualized via field emission scanning electron microscopy (FEG-SEM) images of the surface and cross-sections. X-ray diffraction (XRD)-analysis was performed to analyse changes in crystal structures. The chemical surface composition of the near-surface layer was determined by X-ray photoelectron spectroscopy (XPS). Results show a significant influence of heat accumulation while processing with high laser repetition rates on the formation, crystallinity and chemical composition of self-organized structures depending on the scanning strategy. The ablation with different laser scanning strategies led to varying dynamics of growth-mechanisms of self-organized structures, formation of intermetallic phases (Ti3Al), sub-oxides and oxides (Ti6O, TiO) as well as ions (Ti3+, Ti4+) in surface layer reliant on applied fluence. Furthermore, investigations revealed a heat-affected zone up to several micrometers in non-ablated material. © 2021 The Authors
  • Item
    Designing Hierarchical ZSM-5 Materials for Improved Production of LPG Olefins in the Catalytic Cracking of Triglycerides
    (New York, NY : Hindawi, 2019) Vu, Xuan Hoan; Armbruster, Udo
    LPG olefins (propene and butenes) are key building blocks in the petrochemical industry whose demand has been expanding steadily in recent years. The use of FCC (fluid catalytic cracking) units for conversion of triglycerides is a promising option for the future to boost production of LPG olefins. However, a need for innovative cracking catalysts is rising due to the different nature between petroleum and biomass-derived feedstocks. In this study, series of hierarchical ZSM-5 materials, namely, mesoporous ZSM-5, nanosized ZSM-5, and composite ZSM-5 were prepared, aiming to enhance the production of LPG olefins along with transportation fuels. Mesoporous ZSM-5 materials were synthesized by the postsynthetic modifications involving base treatment and subsequent acid washing, whereas nanosized ZSM-5 and composite ZSM-5 were synthesized by the direct-synthetic routes for a comparative purpose. The obtained materials were characterized by XRD, FTIR, N2 sorption, TEM, AAS, ICP-AES, and NH3-TPD, and their catalytic performance was assessed in the cracking of triolein as a representative of triglycerides under FCC conditions. It was found that the subsequent strong acid washing step of alkaline treated ZSM-5 for removal of aluminum debris and external acid sites is needed to improve the catalytic performance. The resulting mesoporous ZSM-5 material shows higher yields of the desired products, i.e., gasoline and LPG olefins than its parent, commercial ZSM-5 at the almost complete conversion (ca. 90 wt.%). The selectivity toward LPG olefins is also enhanced over all the hierarchical ZSM-5 materials, particularly high for composite ZSM-5 (ca. 94 wt.%). The improved diffusion and lowered acidity of the hierarchical ZSM-5 materials might be responsible for their superior catalytic performance. © 2019 Xuan Hoan Vu and Udo Armbruster.