Search Results

Now showing 1 - 10 of 38
  • Item
    Understanding Business Environments and Success Factors for Emerging Bioeconomy Enterprises through a Comprehensive Analytical Framework
    (Basel : MDPI, 2020) Adamseged, Muluken Elias; Grundmann, Philipp
    The development toward the bioeconomy requires, among others, generating and institutionalizing knowledge that contributes to technical and nontechnical inventions and innovations. Efforts to support innovation are often linked with the development of business models that facilitate the development in bioeconomy. However, the interdependences between the business models and their business environments are not sufficiently well understood in a way where misalignments that can obstruct the development can be dealt with adequately. Given this lacuna, this research aims to contribute to the development of a comprehensive analytical framework for better understanding the conditions of business environment as well as empirically apply the framework in an empirical study on cases of bioeconomy enterprises in Europe. In this paper, a comprehensive business environment framework is developed and applied for analyzing over 80 cases, thereby allowing for critical action arenas and crucial success factors to be identified. The findings are derived from a systematic application of the framework to relevant action arenas for business development: institutional development, technology and knowledge, consumersā€™ agency, market structure, funding, resource and infrastructure, and training and education. The results show that businesses in the bioeconomy, unlike other businesses, have to deal with more and very specific constraining legislative issues, infant and non-adapted technology and knowledge, as well as unclear values and perceptions of consumers. Due to this, businesses have to develop new forms of cooperation with different stakeholders. Successful businesses are characterized by the fact that they develop specific strategies, steering structures, and processes with a particular focus on learning and innovation to overcome misalignments between the business environment and their business models. Focusing efforts on learning and innovation in institutional development, technology and knowledge, consumersā€™ agency, and funding are especially promising as these turned out to be particularly critical and in particular need of institutional alignment for reducing different kinds of transaction costs in the development of bioeconomy.
  • Item
    Improving the Accuracy of Hydrodynamic Simulations in Data Scarce Environments Using Bayesian Model Averaging: A Case Study of the Inner Niger Delta, Mali, West Africa
    (Basel : MDPI, 2019) Haque, Md Mominul; Seidou, Ousmane; Mohammadian, Abdolmajid; Djibo, Abdouramane Gado; Liersch, Stefan; Fournet, Samuel; Karam, Sara; Perera, Edangodage Duminda Pradeep; Kleynhans, Martin
    In this paper, the study area was the Inner Niger Delta (IND) in Mali, West Africa. The IND is threatened by climate change, increasing irrigation, and dam operations. 2D hydrodynamic modelling was used to simulate water levels, discharge, and inundation extent in the IND. Three different digital elevation models (DEM) (SRTM, MERIT, and a DEM derived from satellite images were used as a source of elevation data. Six different models were created, with different sources of elevation data and different downstream boundary conditions. Given that the performance of the models varies according to the location in the IND, the variable under consideration and the performance criteria, Bayesian Model Averaging (BMA) was used to assess the relative performance of each of the six models. The BMA weights, along with deterministic performance measures, such as the Nash Sutcliffe coefficient (NS) and the Pearsonā€™s correlation coefficient (r), provide quantitative evidence as to which model is the best when simulating a particular hydraulic variable at a particular location. After the models were combined with BMA, both discharge and water levels could be simulated with reasonable precision (NS > 0.8). The results of this work can contribute to the more efficient management of water resources in the IND.
  • Item
    How Clusters Create Shared Value in Rural Areas: An Examination of Six Case Studies
    (Basel : MDPI, 2021) Martinidis, George; Adamseged, Muluken Elias; Dyjakon, Arkadiusz; Fallas, Yannis; Foutri, Angeliki; Grundmann, Philipp; Hamann, Karen; Minta, Stanislaw; Ntavos, Nikolaos; RĆ„berg, Tora; Russo, Silvia; Viaggi, Davide
    The main aim of this paper is to demonstrate that clusters can support the sustainable development of rural areas through the creation of shared value. This is done via the close exam-ination of six different cases of rural clusters in Greece, Italy, Germany, Poland, Denmark, and Sweden. Qualitative as well as quantitative data were taken from the clusters, which demonstrated that their main business approaches naturally coincided with the creation of economic, social, and environmental benefits for the local communities in which they operated. The case clusters were created in a top-down manner, aimed at boosting regional R&D activities and making the local economy more competitive and more sustainable. However, private initiative took over and al-lowed these clusters to flourish because meeting the regionsā€™ economic, social, and environmental needs successfully coincided with the target of the clustersā€™ own development and profitability. The results show that clusters, with their potential for shared value creation, can constitute a powerful engine for the revitalisation and development of rural areas, addressing the significant challenges which they are currently facing.
  • Item
    Knowledge Transfer with Citizen Science: Luft-Leipzig Case Study
    (Basel : MDPI, 2021) TƵnisson, Liina; VoigtlƤnder, Jens; Weger, Michael; Assmann, Denise; KƤthner, Ralf; Heinold, Bernd; Macke, Andreas
    Community-based participatory research initiatives such as ā€œhackAirā€, ā€œluftdaten.infoā€, ā€œsenseBoxā€, ā€œCAPTORā€, ā€œCurieuzeNeuzen Vlaanderenā€, ā€œcommunityAQā€, and ā€œHealthy Air, Healthier Childrenā€ campaign among many others for mitigating short-lived climate pollutants (SLCPs) and improving air quality have reported progressive knowledge transfer results. These research initiatives provide the research community with the practical four-element state-of-the-art method for citizen science. For the preparation-, measurements-, data analysis-, and scientific support-elements that collectively present the novel knowledge transfer method, the Luft-Leipzig project results are presented. This research contributes to science by formulating a novel method for SLCP mitigation projects that employ citizen scientists. The Luft-Leipzig project results are presented to validate the four-element state-of-the-art method. The method is recommended for knowledge transfer purposes beyond the scope of mitigating short-lived climate pollutants (SLCPs) and improving air quality.
  • Item
    Modelling Climate Changeā€™s Impact on the Hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland
    (Basel : MDPI, 2019) Oā€™Keeffe, Joanna; Marcinkowski, Paweł; Utratna, Marta; Piniewski, Mikołaj; Kardel, Ignacy; Kundzewicz, Zbigniew; Okruszko, Tomasz
    Climate change is expected to affect the water cycle through changes in precipitation, river streamflow, and soil moisture dynamics, and therefore, present a threat to groundwater and surface water-fed wetland habitats and their biodiversity. This article examines the past trends and future impacts of climate change on riparian, water-dependent habitats within the special areas of conservation (SAC) of the Natura 2000 network located within Odra and Vistula River basins in Poland. Hydrological modelling using the Soil and Water Assessment Tool (SWAT) was driven by a set of nine EURO-CORDEX regional climate models under two greenhouse gas concentration trajectories. Changes in the duration of flooding and inundation events were used to assess climate changeā€™s impact on surface water-fed wetland habitats. The groundwater-fed wetlands were evaluated on the basis of changes in soil water content. Information about the current conservation status, threats, and pressures that affect the habitats suggest that the wetlands might dry out. Increased precipitation projected for the future causing increased water supply to both surface water and groundwater-fed wetlands would lead to beneficial outcomes for habitats with good, average, or reduced conservation status. However, habitats with an excellent conservation status that are already in optimum condition could be negatively affected by climate change as increased soil water or duration of overbank flow would exceed their tolerance.
  • Item
    Development of Biorefineries in the Bioeconomy: A Fuzzy-Set Qualitative Comparative Analysis among European Countries
    (Basel : MDPI, 2021) Ding, Zhengqiu; Grundmann, Philipp
    This study aims to identify the configurational conditions that characterize the establish-ment of biorefineries in 20 European countries. After determining the conditions which support a bioeconomy transition, secondary data from national sources are used to represent their existing conditions within respective countries. Then, a fuzzy-set qualitative comparative analysis is em-ployed to compare and contrast the effect of varying combinations of the selected conditions on the development of biorefineries. The conditions chosen include coherent bioeconomy strategies, network intensity of regional bioclusters, intellectual capital, and natural resource availability. Our results reveal that the configuration of a coherent bioeconomy strategy, sizable public spending on R&D, abundant biomass supply, and a high level of network intensity is sufficient to explain the pro-nounced biorefineries development among some European countries. We recommend that countries with fragmented approaches review and redesign the policy and regulatory framework to create a holistic and consistent bioeconomy strategy, taking into account the configurations of conditions as an important prerequisite. In particular, factors such as the lack of best practice examples, the low level of public spending on research and development, the economic capacities for a skilled workforce in addition to the sustainable supply of raw materials should be addressed as focal points.
  • Item
    Effect of 1-Methyl Cyclopropane and Modified Atmosphere Packaging on the Storage of Okra (Abelmoschus esculentus L.) : Theory and Experiments
    (Basel : MDPI, 2020) Kanwal, Rabia; Ashraf, Hadeed; Sultan, Muhammad; Babu, Irrum; Yasmin, Zarina; Nadeem, Muhammad; Asghar, Muhammad; Shamshiri, Redmond R.; Ibrahim, Sobhy M.; Ahmad, Nisar; Imran, Muhammad A.; Zhou, Yuguang; Ahmad, Riaz
    Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 Ā°C) and low (i.e., 7 Ā°C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, āˆ†E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 Ā°C and 7 Ā°C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 Ā°C and 20 days at 7 Ā°C.
  • Item
    Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications
    (Basel : MDPI, 2020) Naik, B. Kiran; Joshi, Mullapudi; Muthukumar, Palanisamy; Sultan, Muhammad; Miyazaki, Takahiko; Shamshiri, Redmond R.; Ashraf, Hadeed
    This study reports on the investigation of the performance of single and two-stage liquid and solid desiccant dehumidification systems and two-stage combined liquid and solid desiccant dehumidification systems with reference to humid climates. The research focus is on a dehumidification system capacity of 25 kW designed for room air conditioning application using the thermal models reported in the literature. RD-type silica gel and LiCl are used as solid and liquid desiccant materials, respectively. In this study, the application of proposed system for deep drying application is also explored. Condensation rate and moisture removal efficiency are chosen as performance parameters for room air conditioning application, whereas air outlet temperature is chosen as performance parameter for deep drying application. Further, for a given range of operating parameters, influences of air inlet humidity ratio, flow rate, and inlet temperature on performance parameters of the systems are investigated. In humid climatic conditions, it has been observed that a two-stage liquid desiccant dehumidification system is more effective for room air conditioning application, and two-stage solid desiccant dehumidification system is more suitable for deep drying application in the temperature range of 50 to 70 Ā°C, while single-stage solid desiccant and two-stage combined liquid and solid desiccant dehumidification systems are more effective for low temperature, i.e., 30 to 50 Ā°C deep drying application.
  • Item
    Spatial-Explicit Climate Change Vulnerability Assessments Based on Impact Chains. Findings from a Case Study in Burundi
    (Basel : MDPI, 2020) Schneiderbauer, Stefan; Baunach, Daniel; Pedoth, Lydia; Renner, Kathrin; Fritzsche, Kerstin; Bollin, Christina; Pregnolato, Marco; Zebisch, Marc; Liersch, Stefan; Rivas LĆ³pez, MarĆ­a del RocĆ­o; Ruzima, Salvator
    Climate change vulnerability assessments are an essential instrument to identify regions most vulnerable to adverse impacts of climate change and to determine appropriate adaptation measures. Vulnerability assessments directly support countries in developing adaptation plans and in identifying possible measures to reduce adverse consequences of changing climate conditions. Against this background, this paper describes a vulnerability assessment using an integrated and participatory approach that builds on standardized working steps of previously developed ā€˜Vulnerability Sourcebookā€™ guidelines. The backbone of this approach is impact chains as a conceptual model of causeā€“effect relationships as well as a structured selection of indicators according to the three main components of vulnerability, namely exposure, sensitivity and adaptive capacity. We illustrate our approach by reporting the results of a vulnerability assessment conducted in Burundi focusing on climate change impacts on water and soil resources. Our work covers two analysis scales: a national assessment with the aim to identify climate change ā€˜hotspot regionsā€™ through vulnerability mapping; and a local assessment aiming at identifying local-specific drivers of vulnerability and appropriate adaptation measures. Referring to this vulnerability assessment in Burundi, we discuss the potentials and constraints of the approach. We stress the need to involve stakeholders in every step of the assessment and to communicate limitations and uncertainties of the applied methods, indicators and maps in order to increase the comprehension of the approach and the acceptance of the results by different stakeholders. The study proved the practical usability of the approach at the national level by the selection of three particularly vulnerable areas. The results at a local scale supported the identification of adaption measures through intensive engagement of local rural populations.
  • Item
    Consistency in Vulnerability Assessments of Wheat to Climate Changeā€”A District-Level Analysis in India
    (Basel : MDPI, 2020) Dhamija, Vanshika; Shukla, Roopam; Gornott, Christoph; Joshi, PK
    In India, a reduction in wheat crop yield would lead to a widespread impact on food security. In particular, the most vulnerable people are severely exposed to food insecurity. This study estimates the climate change vulnerability of wheat crops with respect to heterogeneities in time, space, and weighting methods. The study uses the Intergovernmental Panel on Climate Change (IPCC) framework of vulnerability while using composite indices of 27 indicators to explain exposure, sensitivity, and adaptive capacity. We used climate projections under current (1975ā€“2005) conditions and two future (2021ā€“2050) Representation Concentration Pathways (RCPs), 4.5 and 8.5, to estimate exposure to climatic risks. Consistency across three weighting methods (Analytical Hierarchy Process (AHP), Principal Component Analysis (PCA), and Equal Weights (EWs)) was evaluated. Results of the vulnerability profile suggest high vulnerability of the wheat crop in northern and central India. In particular, the districts Unnao, Sirsa, Hardoi, and Bathinda show high vulnerability and high consistency across current and future climate scenarios. In total, 84% of the districts show more than 75% consistency in the current climate, and 83% and 68% of the districts show more than 75% consistency for RCP 4.5 and RCP 8.5 climate scenario for the three weighting methods, respectively. By using different weighting methods, it was possible to quantify ā€œmethod uncertaintyā€ in vulnerability assessment and enhance robustness in identifying most vulnerable regions. Finally, we emphasize the importance of communicating uncertainties, both in data and methods in vulnerability research, to effectively guide adaptation planning. The results of this study would serve as the basis for designing climate impacts adjusted adaptation measures for policy interventions.