Search Results

Now showing 1 - 10 of 80
  • Item
    Nucleation of jet engine oil vapours is a large source of aviation-related ultrafine particles
    (London : Springer Nature, 2022) Ungeheuer, Florian; Caudillo, Lucía; Ditas, Florian; Simon, Mario; van Pinxteren, Dominik; Kılıç, Doğuşhan; Rose, Diana; Jacobi, Stefan; Kürten, Andreas; Curtius, Joachim; Vogel, Alexander L.
    Large airports are a major source of ultrafine particles, which spread across densely populated residential areas, affecting air quality and human health. Jet engine lubrication oils are detectable in aviation-related ultrafine particles, however, their role in particle formation and growth remains unclear. Here we show the volatility and new-particle-formation ability of a common synthetic jet oil, and the quantified oil fraction in ambient ultrafine particles downwind of Frankfurt International Airport, Germany. We find that the oil mass fraction is largest in the smallest particles (10-18 nm) with 21% on average. Combining ambient particle-phase concentration and volatility of the jet oil compounds, we determine a lower-limit saturation ratio larger than 1 × 105 for ultra-low volatility organic compounds. This indicates that the oil is an efficient nucleation agent. Our results demonstrate that jet oil nucleation is an important mechanism that can explain the abundant observations of high number concentrations of non-refractory ultrafine particles near airports.
  • Item
    Megacity and local contributions to regional air pollution: An aircraft case study over London
    (Katlenburg-Lindau : EGU, 2020) Ashworth, Kirsti; Bucci, Silvia; Gallimore, Peter J.; Lee, Junghwa; Nelson, Beth S.; Sanchez-Marroquín, Alberto; Schimpf, Marina B.; Smith, Paul D.; Drysdale, Will S.; Hopkins, Jim R.; Lee, James D.; Pitt, Joe R.; Di Carlo, Piero; Krejci, Radovan; McQuaid, James B.
    In July 2017 three research flights circumnavigating the megacity of London were conducted as a part of the STANCO training school for students and early career researchers organised by EUFAR (European Facility for Airborne Research). Measurements were made from the UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146-301 atmospheric research aircraft with the aim to sample, characterise and quantify the impact of megacity outflow pollution on air quality in the surrounding region. Conditions were extremely favourable for airborne measurements, and all three flights were able to observe clear pollution events along the flight path. A small change in wind direction provided sufficiently different air mass origins over the 2 d such that a distinct pollution plume from London, attributable marine emissions and a double-peaked dispersed area of pollution resulting from a combination of local and transported emissions were measured. We were able to analyse the effect of London emissions on air quality in the wider region and the extent to which local sources contribute to pollution events. The background air upwind of London was relatively clean during both days; concentrations of CO were 88-95 ppbv, total (measured) volatile organic compounds (VOCs) were 1.6-1.8 ppbv and NOx was 0.7- 0.8 ppbv. Downwind of London, we encountered elevations in all species with CO>100 ppbv, VOCs 2.8-3.8 ppbv, CH4>2080 ppbv and NOx>4 ppbv, and peak concentrations in individual pollution events were higher still. Levels of O3 were inversely correlated with NOx during the first flight, with O3 concentrations of 37 ppbv upwind falling to 26 ppbv in the well-defined London plume. Total pollutant fluxes from London were estimated through a vertical plane downwind of the city. Our calculated CO2 fluxes are within the combined uncertainty of those estimated previously, but there was a greater disparity in our estimates of CH4 and CO. On the second day, winds were lighter and downwind O3 concentrations were elevated to 39-43 ppbv (from 32 to 35 ppbv upwind), reflecting the contribution of more aged pollution to the regional background. Elevations in pollutant concentrations were dispersed over a wider area than the first day, although we also encountered a number of clear transient enhancements from local sources. This series of flights demonstrated that even in a region of megacity outflow, such as the south-east of the UK, local fresh emissions and more distant UK sources of pollution can all contribute substantially to pollution events. In the highly complex atmosphere around a megacity where a high background level of pollution mixes with a variety of local sources at a range of spatial and temporal scales and atmospheric dynamics are further complicated by the urban heat island, the use of pollutant ratios to track and determine the ageing of air masses may not be valid. The individual sources must therefore all be well-characterised and constrained to understand air quality around megacities such as London. Research aircraft offer that capability through targeted sampling of specific sources and longitudinal studies monitoring trends in emission strength and profiles over time. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Long-term behavior of the concentration of the minor constituents in the mesosphere-a model study
    (Göttingen : Copernicus, 2009) Grygalashvyly, M.; Sonnemann, G.R.; Hartogh, P.
    We investigate the influence the rising concentrations of methane, nitrous oxide and carbon dioxide which have occurred since the pre-industrial era, have had on the chemistry of the mesosphere. For this investigation we use our global 3-D-model COMMA-IAP which was designed for the exploration of the MLT-region and in particular the extended mesopause region. Assumptions and approximations for the trends in the Lyman-flux (needed for the water vapor dissociation rate), methane and the water vapor mixing ratio at the hygropause are necessary to accomplish this study. To approximate the solar Lyman-α flux back to the pre-industrial time, we derived a quadratic fit using the sunspot number record which extends back to 1749 and is the only solar proxy available for the Lyman-α flux prior to 1947. We assume that methane increases with a constant growth rate from the pre-industrial era to the present. An unsolved problem for the model calculations consists of how the water vapor mixing ratio at the hygropause should be specified during this period. We assume that the hygropause was dryer during pre-industrial times than the present. As a consequence of methane oxidation, the model simulation indicates that the middle atmosphere has become more humid as a result of the rising methane concentration, but with some dependence on height and with a small time delay of few years. The solar influence on the water vapor mixing ratio is insignificant below about 80 km in summer high latitudes, but becomes increasingly more important above this altitude. The enhanced water vapor concentration increasesthe hydrogen radical concentration and reduces the mesospheric ozone. A second region of stronger ozone decrease is located in the vicinity of the stratopause. Increases in CO2 concentration enhance slightly the concentration of CO in the mesosphere. However, its influence upon the chemistry is small and its main effect is connected with a cooling of the upper atmosphere. The long-term behavior of water vapor is discussed in particular with respect to its impact on the NLC region.
  • Item
    Status and future of numerical atmospheric aerosol prediction with a focus on data requirements
    (Katlenburg-Lindau : EGU, 2018) Benedetti, Angela; Reid, Jeffrey S.; Knippertz, Peter; Marsham, John H.; Di Giuseppe, Francesca; Rémy, Samuel; Basart, Sara; Boucher, Olivier; Brooks, Ian M.; Menut, Laurent; Mona, Lucia; Laj, Paolo; Pappalardo, Gelsomina; Wiedensohler, Alfred; Baklanov, Alexander; Brooks, Malcolm; Colarco, Peter R.; Cuevas, Emilio; da Silva, Arlindo; Escribano, Jeronimo; Flemming, Johannes; Huneeus, Nicolas; Jorba, Oriol; Kazadzis, Stelios; Kinne, Stefan; Popp, Thomas; Quinn, Patricia K.; Sekiyama, Thomas T.; Tanaka, Taichu; Terradellas, Enric
    Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation and military authorities, solar energy plant managers, climate services providers, and health professionals. Owing to the complexity of atmospheric aerosol processes and their sensitivity to the underlying meteorological conditions, the prediction of aerosol particle concentrations and properties in the numerical weather prediction (NWP) framework faces a number of challenges. The modeling of numerous aerosol-related parameters increases computational expense. Errors in aerosol prediction concern all processes involved in the aerosol life cycle including (a) errors on the source terms (for both anthropogenic and natural emissions), (b) errors directly dependent on the meteorology (e.g., mixing, transport, scavenging by precipitation), and (c) errors related to aerosol chemistry (e.g., nucleation, gas-aerosol partitioning, chemical transformation and growth, hygroscopicity). Finally, there are fundamental uncertainties and significant processing overhead in the diverse observations used for verification and assimilation within these systems. Indeed, a significant component of aerosol forecast development consists in streamlining aerosol-related observations and reducing the most important errors through model development and data assimilation. Aerosol particle observations from satellite- and ground-based platforms have been crucial to guide model development of the recent years and have been made more readily available for model evaluation and assimilation. However, for the sustainability of the aerosol particle prediction activities around the globe, it is crucial that quality aerosol observations continue to be made available from different platforms (space, near surface, and aircraft) and freely shared. This paper reviews current requirements for aerosol observations in the context of the operational activities carried out at various global and regional centers. While some of the requirements are equally applicable to aerosol-climate, the focus here is on global operational prediction of aerosol properties such as mass concentrations and optical parameters. It is also recognized that the term "requirements" is loosely used here given the diversity in global aerosol observing systems and that utilized data are typically not from operational sources. Most operational models are based on bulk schemes that do not predict the size distribution of the aerosol particles. Others are based on a mix of "bin" and bulk schemes with limited capability of simulating the size information. However the next generation of aerosol operational models will output both mass and number density concentration to provide a more complete description of the aerosol population. A brief overview of the state of the art is provided with an introduction on the importance of aerosol prediction activities. The criteria on which the requirements for aerosol observations are based are also outlined. Assimilation and evaluation aspects are discussed from the perspective of the user requirements.
  • Item
    Molecular distributions of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 collected at the top of Mt. Tai, North China, during the wheat burning season of 2014
    (Katlenburg-Lindau : EGU, 2018) Zhu, Yanhong; Yang, Lingxiao; Chen, Jianmin; Kawamura, Kimitaka; Sato, Mamiko; Tilgner, Andreas; van Pinxteren, Dominik; Chen, Ying; Xue, Likun; Wang, Xinfeng; Simpson, Isobel J.; Herrmann, Hartmut; Blake, Donald R.; Wang, Wenxing
    Fine particulate matter (PM2.5) samples collected at Mount (Mt.) Tai in the North China Plain during summer 2014 were analyzed for dicarboxylic acids and related compounds (oxocarboxylic acids and α-dicarbonyls) (DCRCs). The total concentration of DCRCs was 1050±580 and 1040±490ng m-3 during the day and night, respectively. Although these concentrations were about 2 times lower than similar measurements in 2006, the concentrations reported here were about 1-13 times higher than previous measurements in other major cities in the world. Molecular distributions of DCRCs revealed that oxalic acid (C2) was the dominant species (50%), followed by succinic acid (C4) (12%) and malonic acid (C3) (8%). WRF modeling revealed that Mt. Tai was mostly in the free troposphere during the campaign and long-range transport was a major factor governing the distributions of the measured compounds at Mt. Tai. A majority of the samples (79%) had comparable concentrations during the day and night, with their day-night concentration ratios between 0.9 and 1.1. Multi-day transport was considered an important reason for the similar concentrations. Correlation analyses of DCRCs and their gas precursors and between C2 and sulfate indicated precursor emissions and aqueous-phase oxidations during long-range transport also likely play an important role, especially during the night. Source identification indicated that anthropogenic activities followed by photochemical aging accounted for about 60% of the total variance and were the dominant source at Mt. Tai. However, biomass burning was only important during the first half of the measurement period. Measurements of potassium (K+) and DCRCs were about 2 times higher than those from the second half of the measurement period. The concentration of levoglucosan, a biomass burning tracer, decreased by about 80% between 2006 and 2014, indicating that biomass burning may have decreased between 2006 and 2014.
  • Item
    CCN measurements at the Princess Elisabeth Antarctica research station during three austral summers
    (Göttingen : Copernicus GmbH, 2019) Herenz, P.; Wex, H.; Mangold, A.; Laffineur, Q.; Gorodetskaya, I.V.; Fleming, Z.L.; Panagi, M.; Stratmann, F.
    For three austral summer seasons (2013-2016, each from December to February) aerosol particles arriving at the Belgian Antarctic research station Princess Elisabeth (PE) in Dronning Maud Land in East Antarctica were characterized. This included number concentrations of total aerosol particles (N CN ) and cloud condensation nuclei (N CCN ), the particle number size distribution (PNSD), the aerosol particle hygroscopicity, and the influence of the air mass origin on N CN and N CCN . In general N CN was found to range from 40 to 6700cm -3 , with a median of 333cm -3 , while N CCN was found to cover a range between less than 10 and 1300cm-3 for supersaturations (SSs) between 0.1% and 0.7%. It is shown that the aerosol is dominated by the Aitken mode, being characterized by a significant amount of small, and therefore likely secondarily formed, aerosol particles, with 94% and 36% of the aerosol particles smaller than 90 and ≈35nm, respectively. Measurements of the basic meteorological parameters as well as the history of the air masses arriving at the measurement station indicate that the station is influenced by both marine air masses originating from the Southern Ocean and coastal areas around Antarctica (marine events - MEs) and continental air masses (continental events - CEs). CEs, which were defined as instances when the air masses spent at least 90% of the time over the Antarctic continent during the last 10 days prior to arrival at the measurements station, occurred during 61% of the time during which measurements were done. CEs came along with rather constant N CN and N CCN values, which we denote as Antarctic continental background concentrations. MEs, however, cause large fluctuations in N CN and N CCN , with low concentrations likely caused by scavenging due to precipitation and high concentrations likely originating from new particle formation (NPF) based on marine precursors. The application of HYSPLIT back trajectories in form of the potential source contribution function (PSCF) analysis indicate that the region of the Southern Ocean is a potential source of Aitken mode particles. On the basis of PNSDs, together with N CCN measured at an SS of 0.1%, median values for the critical diameter for cloud droplet activation and the aerosol particle hygroscopicity parameter ° were determined to be 110nm and 1, respectively. For particles larger than ĝ‰110nm the Southern Ocean together with parts of the Antarctic ice shelf regions were found to be potential source regions. While the former may contribute sea spray particles directly, the contribution of the latter may be due to the emission of sea salt aerosol particles, released from snow particles from surface snow layers, e.g., during periods of high wind speed, leading to drifting or blowing snow. The region of the Antarctic inland plateau, however, was not found to feature a significant source region for aerosol particles in general or page276 for cloud condensation nuclei measured at the PE station in the austral summer.
  • Item
    Heterogeneous N2O5 uptake coefficient and production yield of ClNO2 in polluted northern China: Roles of aerosol water content and chemical composition
    (Katlenburg-Lindau : EGU, 2018) Tham, Yee Jun; Wang, Zhe; Li, Qinyi; Wang, Weihao; Wang, Xinfeng; Lu, Keding; Ma, Nan; Yan, Chao; Kecorius, Simonas; Wiedensohler, Alfred; Zhang, Yuanhang; Wang, Tao
    Heterogeneous uptake of dinitrogen pentoxide (N2O5) and production of nitryl chloride (ClNO2) are important nocturnal atmospheric processes that have significant implications for the production of secondary pollutants. However, the understanding of N2O5 uptake processes and ClNO2 production remains limited, especially in China. This study presents a field investigation of the N2O5 heterogeneous uptake coefficient (γ(N2O5)) and ClNO2 production yield (ϕ) in a polluted area of northern China during the summer of 2014. The N2O5 uptake coefficient and ClNO2 yield were estimated by using the simultaneously measured ClNO2 and total nitrate in 10 selected cases, which have concurrent increases in the ClNO2 and nitrate concentrations and relatively stable environmental conditions. The determined γ(N2O5) and ϕ values varied greatly, with an average of 0.022 for γ(N2O5) (±0.012, standard deviation) and 0.34 for ϕ (±0.28, standard deviation). The variations in γ(N2O5) could not be fully explained by the previously derived parameterizations of N2O5 uptake that consider nitrate, chloride, and the organic coating. Heterogeneous uptake of N2O5 was found to have a strong positive dependence on the relative humidity and aerosol water content. This result suggests that the heterogeneous uptake of N2O5 in Wangdu is governed mainly by the amount of water in the aerosol, and is strongly water limited, which is different from most of the field observations in the US and Europe. The ClNO2 yield estimated from the parameterization was also overestimated comparing to that derived from the observation. The observation-derived ϕ showed a decreasing trend with an increasing ratio of acetonitrile to carbon monoxide, an indicator of biomass burning emissions, which suggests a possible suppressive effect on the production yield of ClNO2 in the plumes influenced by biomass burning in this region. The findings of this study illustrate the need to improve our understanding and to parameterize the key factors for γ(N2O5) and ϕ to accurately assess photochemical and haze pollution.
  • Item
    Estimation of cloud condensation nuclei number concentrations and comparison to in situ and lidar observations during the HOPE experiments
    (Katlenburg-Lindau : EGU, 2020) Genz, Christa; Schrödner, Roland; Heinold, Bernd; Henning, Silvia; Baars, Holger; Spindler, Gerald; Tegen, Ina
    Atmospheric aerosol particles are the precondition for the formation of cloud droplets and therefore have large influence on the microphysical and radiative properties of clouds. In this work, four different methods to derive or measure number concentrations of cloud condensation nuclei (CCN) were analyzed and compared for presentday aerosol conditions: (i) a model parameterization based on simulated particle concentrations, (ii) the same parameterization based on gravimetrical particle measurements, (iii) direct CCN measurements with a CCN counter, and (iv) lidarderived and in situ measured vertical CCN profiles. In order to allow for sensitivity studies of the anthropogenic impact, a scenario to estimate the maximum CCN concentration under peak aerosol conditions of the mid-1980s in Europe was developed as well. In general, the simulations are in good agreement with the observations. At ground level, average values between 0.7 and 1:5 × 109 CCNm-3 at a supersaturation of 0.2 % were found with the different methods under present-day conditions. The discrimination of the chemical species revealed an almost equal contribution of ammonium sulfate and ammonium nitrate to the total number of CCN for present-day conditions. This was not the case for the peak aerosol scenario, in which it was assumed that no ammonium nitrate was formed while large amounts of sulfate were present, consuming all available ammonia during ammonium sulfate formation. The CCN number concentration at five different supersaturation values has been compared to the measurements. The discrepancies between model and in situ observations were lowest for the lowest (0.1 %) and highest supersaturations (0.7 %). For supersaturations between 0.3 % and 0.5 %, the model overestimated the potentially activated particle fraction by around 30 %. By comparing the simulation with observed profiles, the vertical distribution of the CCN concentration was found to be overestimated by up to a factor of 2 in the boundary layer. The analysis of the modern (year 2013) and the peak aerosol scenario (expected to be representative of the mid-1980s over Europe) resulted in a scaling factor, which was defined as the quotient of the average vertical profile of the peak aerosol and present-day CCN concentration. This factor was found to be around 2 close to the ground, increasing to around 3.5 between 2 and 5 km and approaching 1 (i.e., no difference between present-day and peak aerosol conditions) with further increasing height. © 2020 Author(s).
  • Item
    Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport
    (Katlenburg-Lindau : European Geosciences Union, 2021) Ungeheuer, Florian; van Pinxteren, Dominik; Vogel, Alexander L.
    Analysing the composition of ambient ultrafine particles (UFPs) is a challenging task due to the low mass and chemical complexity of small particles, yet it is a prerequisite for the identification of particle sources and the assessment of potential health risks. Here, we show the molecular characterization of UFPs, based on cascade impactor (Nano-MOUDI) samples that were collected at an air quality monitoring station near one of Europe's largest airports, in Frankfurt, Germany. At this station, particle-size-distribution measurements show an enhanced number concentration of particles smaller than 50 nm during airport operating hours. We sampled the lower UFP fraction (0.010-0.018, 0.018-0.032, 0.032-0.056 classCombining double low lineinline-formula/m) when the air masses arrived from the airport. We developed an optimized filter extraction procedure using ultra-high-performance liquid chromatography (UHPLC) for compound separation and a heated electrospray ionization (HESI) source with an Orbitrap high-resolution mass spectrometer (HRMS) as a detector for organic compounds. A non-Target screening detected classCombining double low lineinline-formulag1/4200/ organic compounds in the UFP fraction with sample-To-blank ratios larger than 5. We identified the largest signals as homologous series of pentaerythritol esters (PEEs) and trimethylolpropane esters (TMPEs), which are base stocks of aircraft lubrication oils. We unambiguously attribute the majority of detected compounds to jet engine lubrication oils by matching retention times, high-resolution and accurate mass measurements, and comparing tandem mass spectrometry (MS classCombining double low lineinline-formula2/) fragmentation patterns between both ambient samples and commercially available jet oils. For each UFP stage, we created molecular fingerprints to visualize the complex chemical composition of the organic fraction and their average carbon oxidation state. These graphs underline the presence of the homologous series of PEEs and TMPEs and the appearance of jet oil additives (e.g.Tricresyl phosphate, TCP). Targeted screening of TCP confirmed the absence of the harmful tri-iortho/i isomer, while we identified a thermal transformation product of TMPE-based lubrication oil (trimethylolpropane phosphate, TMP-P). Even though a quantitative determination of the identified compounds is limited, the presented method enables the qualitative detection of molecular markers for jet engine lubricants in UFPs and thus strongly improves the source apportionment of UFPs near airports./p. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    Comparison of particle number size distribution trends in ground measurements and climate models
    (Katlenburg-Lindau : EGU, 2022) Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; van Noije, Twan; O'Connor, Fiona M.; O'Dowd, Colin; Olivie, Dirk; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu
    Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.